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Module 4 : Lecture 1 
COMPRESSIBLE FLOWS 

(Fundamental Aspects: Part - I) 
 

Overview 

In general, the liquids and gases are the states of a matter that comes under the same 

category as “fluids”. The incompressible flows are mainly deals with the cases of 

constant density. Also, when the variation of density in the flow domain is negligible, 

then the flow can be treated as incompressible. Invariably, it is true for liquids 

because the density of liquid decreases slightly with temperature and moderately with 

pressure over a broad range of operating conditions. Hence, the liquids are considered 

as incompressible. On the contrary, the compressible flows are routinely defined as 

“variable density flows”. Thus, it is applicable only for gases where they may be 

considered as incompressible/compressible, depending on the conditions of operation. 

During the flow of gases under certain conditions, the density changes are so small 

that the assumption of constant density can be made with reasonable accuracy and in 

few other cases the density changes of the gases are very much significant (e.g. high 

speed flows). Due to the dual nature of gases, they need special attention and the 

broad area of in the study of motion of compressible flows is dealt separately in the 

subject of “gas dynamics”. Many engineering tasks require the compressible flow 

applications typically in the design of a building/tower to withstand winds, high speed 

flow of air over cars/trains/airplanes etc. Thus, gas dynamics is the study of fluid 

flows where the compressibility and the temperature changes become important. 

Here, the entire flow field is dominated by Mach waves and shock waves when the 

flow speed becomes supersonic. Most of the flow properties change across these 

waves from one state to other. In addition to the basic fluid dynamics, the knowledge 

of thermodynamics and chemical kinetics is also essential to  the study of gas 

dynamics.  
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Thermodynamic Aspects of Gases 

In high speed flows, the kinetic energy per unit mass ( )2 2V is very large which is 

substantial enough to strongly interact with the other properties of the flow. Since the 

science of energy and entropy is the thermodynamics, it is essential to study the 

thermodynamic aspects of gases under the conditions compressible high speed flows.   

Perfect gas: A gas is considered as a collection of particles (molecules, atoms, ions, 

electrons etc.) that are in random motion under certain intermolecular forces. These 

forces vary with distances and thus influence the microscopic behavior of the gases. 

However, the thermodynamic aspect mainly deals with the global nature of the gases. 

Over wide ranges of pressures and temperatures in the compressible flow fields, it is 

seen that the average distance between the molecules is more than the molecular 

diameters (about 10-times). So,  all the flow properties may be treated as macroscopic 

in nature. A perfect gas follows the relation of pressure, density and temperature in 

the form of the fundamental equation.  

; Rp RT R
M

ρ= =                                                 (4.1.1) 

Here, M is the molecular weight of the gas, R  is the gas constant that varies from gas 

to gas and ( )8314J kg.KR =  is the universal gas constant. In a calorically perfect 

gas, the other important thermodynamic properties relations are written as follows; 
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In Eq. (4.1.2), the parameters are specific heat at constant pressure ( )pc , specific heat 

at constant volume ( )vc , specific heat ratio ( )γ , specific enthalpy ( )h  and specific 

internal energy ( )e .  
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First law of thermodynamics: A system is a fixed mass of gas separated from the 

surroundings by a flexible boundary. The heat added ( )q  and work done ( )w  on the 

system can cause change in energy. Since, the system is stationary, the change in 

internal energy. By definition of first law, we write,  

q w deδ δ+ =                                                        (4.1.3) 

For a given de , there are infinite number of different ways by which heat can be 

added and work done on the system. Primarily, the three common types of processes 

are, adiabatic (no addition of heat), reversible (no dissipative phenomena) and 

isentropic (i.e. reversible and adiabatic).  

Second law of thermodynamics: In order to ascertain the direction of a 

thermodynamic process, a new state variable is defined as ‘entropy ( )s ’. The change 

in entropy during any incremental process ( )ds is equal to the actual heat added 

divided by the temperature ( )dq T , plus a contribution from the irreversible 

dissipative phenomena ( )irrevds occurring within the system.  

irrev
qds ds

T
δ

= +                                                          (4.1.4) 

Since, the dissipative phenomena always increases the entropy, it follows that 

( ); 0 Adiabatic processqds ds
T
δ

≥ ≥                               (4.1.5) 

Eqs. (4.1.4 & 4.1.5) are the different forms of second law of thermodynamics. In order 

to calculate the change in entropy of a thermodynamic process, two fundamental 

relations are used for a calorically perfect gas by combining both the laws of 

thermodynamics; 
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An isentropic process is the one for which the entropy is constant and the process is 

reversible and adiabatic. The isentropic relation is given by the following relation; 

( )1

2 2 2

1 1 1

p T
p T

γ γ γ
ρ
ρ

−
   

= =   
   

                                             (4.1.7) 

Important Properties of Compressible Flows 

The simple definition of compressible flow is the variable density flows. In general, 

the density of gases can vary either by changes in pressure and temperature. In fact, 

all the high speed flows are associated with significant pressure changes. So, let us 

recall the following fluid properties important for compressible flows; 

Bulk modulus ( )vE : It is the property of that fluid that represents the variation of 

density ( )ρ  with pressure ( )p  at constant temperature ( )T . Mathematically, it is 

represented as, 

v
T T

pE v
v T

ρρ∂ ∂   = − =   ∂ ∂   
                                             (4.1.8) 

In terms of finite changes, it is approximated as,  

( ) ( )
v
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E
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= = −
∆ ∆

                                               (4.1.9) 

Coefficient of volume expansion ( )β : It is the property of that fluid that represents the 

variation of density with temperature at constant pressure. Mathematically, it is 

represented as, 

1 1

p p

v
v T T

ρβ
ρ

∂ ∂   = = −   ∂ ∂   
                                             (4.1.10) 

In terms of finite changes, it is approximated as,  
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Compressibility ( )κ : It is defined as the fractional change in the density of the fluid 

element per unit change in pressure. One can write the expression for κ as follows; 

 1 d d dp
dp
ρκ ρ ρκ

ρ
 

= ⇒ = 
 

                                           (4.1.12) 

In order to be more precise, the compression process for a gas involves increase in 

temperature depending on the amount of heat added or taken away from the gas. If the 

temperature of the gas remains constant, the definition is refined as isothermal 

compressibility ( )Tκ . On the other hand, when no heat is added/taken away from the 

gases and in the absence of any dissipative mechanisms, the compression takes place 

isentropically. It is then, called as isentropic compressibility ( )sκ .  

1 1;T s
T sp p

ρ ρκ κ
ρ ρ
   ∂ ∂

= =   ∂ ∂   
                                           (4.1.13) 

Being the property of a fluid, the gases have high values of compressibility 

( )5 210 m N for air at 1atmTκ
−=  while liquids have low values of compressibility 

much less than that of gases ( )10 25 10 m N for water at 1atmTκ
−= × . From the basic 

definition (Eq. 4.1.12), it is seen that whenever a fluid experiences a change in 

pressure dp , there will be a corresponding change in dρ . Normally, high speed 

flows involve large pressure gradient. For a given change in dp , the resulting change 

in density will be small for liquids (low values of κ ) and more for gases (high values 

of κ ).  Therefore, for the flow of liquids, the relative large pressure gradients can 

create much high velocities without much change in densities. Thus, the liquids are 

treated to be incompressible. On the other hand, for the flow of gases, the moderate to 

strong pressure gradient leads to substantial changes in the density (Eq.4.1.12) and at 

the same time, it can create large velocity changes. Such flows are defined as 

compressible flows where the density is a variable property and the fractional change 

in density ( )dρ ρ  is too large to be ignored.  
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Fundamental Equations for Compressible Flow 

Consider a compressible flow passing through a rectangular control volume as shown 

in Fig. 4.1.1. The flow is one-dimensional and the properties change as a function of 

x, from the region ‘1’ to ‘2’ and they are velocity ( )u , pressure ( )p , temperature ( )T , 

density ( )ρ
 
and internal energy ( )e . The following assumptions are made to derive 

the fundamental equations;  

 Flow is uniform over left and right side of control volume. 

 Both sides have equal area ( )A , perpendicular to the flow. 

 Flow is inviscid, steady and nobody forces are present. 

 No heat and work interaction takes place to/from the control volume. 

 

Let us apply mass, momentum and energy equations for the one dimensional flow as 

shown in Fig. 4.1.1.  

Conservation of Mass:   

1 1 2 2 1 1 2 20u A u A u uρ ρ ρ ρ− + = ⇒ =                                      (4.1.14) 

Conservation of Momentum:   

2 2
1 1 1 2 2 2 1 2 1 1 1 2 2 2( ) ( ) ( )u A u u A u p A p A p u p uρ ρ ρ ρ− + = − − + ⇒ + = +        (4.1.15) 

Steady Flow Energy Conservation:   

2 2 2 2
1 1 2 2 1 2

1 2 1 2
1 22 2 2 2

p u p u u ue e h h
ρ ρ

+ + = + + ⇒ + = +                            (4.1.16) 
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Here, the enthalpy ph e
ρ

 
= + 
 

 is defined as another thermodynamic property of the 

gas.  

 

Fig. 4.1.1: Schematic representation of one-dimensional flow.  
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Module 4 : Lecture 2 
COMPRESSIBLE FLOWS 

(Fundamental Aspects: Part - II) 
 

Wave Propagation in a Compressible Media 

Consider a gas confined in a long tube with piston as shown in Fig. 4.2.1(a). The gas 

may be assumed to have infinite number of layers and initially, the system is in 

equilibrium. In other words, the last layer does not feel the presence of piston. Now, 

the piston is given a very small ‘push’ to the right. So, the layer of gas adjacent to the 

piston piles up and is compressed while the reminder of the gas remains unaffected. 

With due course of time, the compression wave moves downstream and the 

information is propagated. Eventually, all the gas layers feel the piston movement. If 

the pressure pulse applied to the gas is small, the wave is called as sound wave and 

the resultant compression wave moves at the “speed of sound”. However, if the fluid 

is treated as incompressible, the change in density is not allowed. So, there will be no 

piling of fluid due to instantaneous change and the disturbance is felt at all other 

locations at the same time. So, the speed of sound depends on the fluid property i.e. 

‘compressibility’. The lower is its value; more will be the speed of sound. In an ideal 

incompressible medium of fluid, the speed of sound is infinite. For instance, sound 

travels about 4.3-times faster in water (1484 m/s) and 15-times as fast in iron (5120 

m/s) than air at 20ºC.   

Let us analyze the piston dynamics as shown in Fig. 4.2.1(a). If the piston moves 

at steady velocity dV , the compression wave moves at speed of sound a
 
into the 

stationary gas. This infinitesimal disturbance creates increase in pressure and density 

next to the piston and in front of the wave. The same effect can be observed by 

keeping the wave stationary through dynamic transformation as shown in Fig. 4.2.1 

(b). Now all basic one dimensional compressible flow equations can be applied for a 

very small control enclosing the stationary wave.  
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Continuity equation:  Mass flow rate ( )m is conserved across the stationary wave.   

( )( ) am a A d a dV A dV dρ ρ ρ ρ
ρ

 
= = + − ⇒ =  

 
                                (4.2.1) 

Momentum equation:  As long as the compression wave is thin, the shear forces on 

the control volume are negligibly small compared to the pressure force. The 

momentum balance across the control volume leads to the following equation; 

( ) ( ) 1p dp A pA m a m a dV dV dp
aρ

 
+ − = − − ⇒ =  

 
                          (4.2.2) 

 

Fig. 4.2.1: Propagation of pressure wave in a compressible medium: (a)  Moving wave; (b) Stationary wave. 
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Energy equation:  Since the compression wave is thin, and the motion is very rapid, 

the heat transfer between the control volume and the surroundings may be neglected 

and the thermodynamic process can be treated as adiabatic. Steady flow energy 

equation can be used for energy balance across the wave.  

( ) ( )22 1
2 2

a dVah h dh dV dh
a

−  + = + + ⇒ =  
 

                           (4.2.3) 

Entropy equation:  In order to decide the direction of thermodynamic process, one can 

apply T ds− relation along with Eqs (4.2.2 & 4.2.3) across the compression wave.  

0 0dpT ds dh ds
ρ

= − = ⇒ =                                        (4.2.4) 

Thus, the flow is isentropic across the compression wave and this compression wave 

can now be called as sound wave. The speed of the sound wave can be computed by 

equating Eqs.(4.2.1 & 4.2.2).   

21

s

a d p pa
a dρ ρ ρ ρ

     ∂
= ⇒ = =     ∂     

                             (4.2.5) 

Further simplification of Eq. (4.2.5) is possible by evaluating the differential with the 

use of isenropic equation.  

constant ln ln constantp pγ γ ρ
ρ

= ⇒ − =                              (4.2.6) 

Differentiate Eq. (4.2.6) and apply perfect gas equation ( )p RTρ=  to obtain the 

expression for speed of sound.  is obtained as below;  

s

p p pa RTγ γ γ
ρ ρ ρ

 ∂
= ⇒ = = ∂ 

                              (4.2.7) 
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Mach number  

It may be seen that the speed of sound is the thermodynamic property that varies from 

point to point. When there is a large relative speed between a body and the 

compressible fluid surrounds it, then the compressibility of the fluid greatly influences 

the flow properties. Ratio of the local speed ( )V of the gas to the speed of sound ( )a  

is called as local Mach number ( )M .   

V VM
a RTγ

= =                                              (4.2.8) 

There are few physical meanings for Mach number; 

(a) It shows the compressibility effect for a fluid i.e. 0.3M <  implies that fluid is 

incompressible.  

(b) It can be shown that Mach number is proportional to the ratio of kinetic to internal 

energy.  

( )
( )

( )
( )

( )2 22 2
2

2

2 2 12 2
1 1 2v

V VV V M
e c T RT a

γ γ γ
γ γ

−
= = = =

− −
               (4.2.9) 

(c) It is a measure of directed motion of a gas compared to the random thermal motion 

of the molecules. 

2
2

2

directed kineticenergy
random kineticenergy

VM
a

= =                         (4.2.10) 
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Compressible Flow Regimes 

In order to illustrate the flow regimes in a compressible medium, let us consider the 

flow over an aerodynamic body (Fig. 4.2.2). The flow is uniform far away from the 

body with free stream velocity ( )V∞ while the speed of sound in the uniform stream is 

a∞ . Then, the free stream Mach number becomes ( )M V a∞ ∞ ∞= . The streamlines can 

be drawn as the flow passes over the body and the local Mach number can also vary 

along the streamlines. Let us consider the following distinct flow regimes commonly 

dealt with in compressible medium.  

Subsonic flow:  It is a case in which an airfoil is placed in a free stream flow and the 

local Mach number is less than unity everywhere in the flow field (Fig. 4.2.2-a). The 

flow is characterized by smooth streamlines with continuous varying properties. 

Initially, the streamlines are straight in the free stream, but begin to deflect as they 

approach the body. The flow expands as it passed over the airfoil and the local Mach 

number on the top surface of the body is more than the free stream value. Moreover, 

the local Mach number ( )M  in the surface of the airfoil remains always less than 1, 

when the free stream Mach number ( )M∞ is sufficiently less than 1. This regime is 

defined as subsonic flow which falls in the range of free stream Mach number less 

than 0.8 i.e. 0.8M∞ ≤ .  

Transonic flow:  If the free stream Mach number increases but remains in the 

subsonic range close to 1, then the flow expansion over the air foil leads to supersonic 

region locally on its surface. Thus, the entire regions on the surface are considered as 

mixed flow in which the local Mach number is either less or more than 1 and thus 

called as sonic pockets (Fig. 4.2.2-b). The phenomena of sonic pocket is initiated as 

soon as the local Mach number reaches 1 and subsequently terminates in the 

downstream with a shock wave across which there is discontinuous and sudden 

change in flow properties. If the free stream Mach number is slightly above unity 

(Fig. 4.2.2-c), the shock pattern will move towards the trailing edge and a second 

shock wave appears in the leading edge which is called as bow shock. In front of this 

bow shock, the streamlines are straight and parallel with a uniform supersonic free 

stream Mach number. After passing through the bow shock, the flow becomes 

subsonic close to the free stream value. Eventually, it further expands over the airfoil 
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surface to supersonic values and finally terminates with trailing edge shock in the 

downstream. The mixed flow patterns sketched in Figs. 4.2.2 (b & c), is defined as the 

transonic regime.  

 

Fig. 4.2.2: Illustration of compressible flow regime: (a) subsonic flow; (b & c) transonic flow; (d) supersonic flow; (d) 

hypersonic flow. 

Supersonic flow:  In a flow field, if the Mach number is more than 1 everywhere in 

the domain, then it defined as supersonic flow. In order to minimize the drag, all 

aerodynamic bodies in a supersonic flow, are generally considered to be sharp edged 

tip. Here, the flow field is characterized by straight, oblique shock as shown in Fig. 

4.2.2(d). The stream lines ahead of the shock the streamlines are straight, parallel and 

horizontal. Behind the oblique shock, the streamlines remain straight and parallel but 

take the direction of wedge surface. The flow is supersonic both upstream and 

downstream of the oblique shock. However, in some exceptional strong oblique 

shocks, the flow in the downstream may be subsonic.  

Hypersonic flow:  When the free stream Mach number is increased to higher 

supersonic speeds, the oblique shock moves closer to the body surface (Fig. 4.2.2-e). 

At the same time, the pressure, temperature and density across the shock increase 

explosively. So, the flow field between the shock and body becomes hot enough to 

ionize the gas. These effects of thin shock layer, hot and chemically reacting gases 

and many other complicated flow features are the characteristics of hypersonic flow. 

In reality, these special characteristics associated with hypersonic flows appear 

gradually as the free stream Mach numbers is increased beyond 5.  
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As a rule of thumb, the compressible flow regimes are classified as below;  

( )
( )

( )
( )

( )

0.3 incompressible flow

1 subsonic flow

0.8 1.2 transonic flow

1 supersonic flow

5and above hypersonic flow

M

M

M

M

M

<

<

< <

>

>

 

Rarefied and Free Molecular Flow: In general, a gas is composed of large number of 

discrete atoms and molecules and all move in a random fashion with frequent 

collisions. However, all the fundamental equations are based on overall macroscopic 

behavior where the continuum assumption is valid. If the mean distance between 

atoms/molecules between the collisions is large enough to be comparable in same 

order of magnitude as that of characteristics dimension of the flow, then it is said to 

be low density/rarefied flow. Under extreme situations, the mean free path is much 

larger than the characteristic dimension of the flow. Such flows are defined as free 

molecular flows. These are the special cases occurring in flight at very high altitudes 

(beyond 100 km) and some laboratory devices such as electron beams.   
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Module 4 : Lecture 3 
COMPRESSIBLE FLOWS 

(Isentropic and Characteristics States) 
 

An isentropic process provides the useful standard for comparing various types of 

flow with that of an idealized one. Essentially, it is the process where all types of 

frictional effects are neglected and no heat addition takes place. Thus, the process is 

considered as reversible and adiabatic. With this useful assumption, many 

fundamental relations are obtained and some of them are discussed here.  

Stagnation/Total Conditions 

When a moving fluid is decelerated isentropically to reach zero speed, then the 

thermodynamic state is referred to as stagnation/total condition/state. For example, a 

gas contained in a high pressure cylinder has no velocity and the thermodynamic state 

is known as stagnation/total condition (Fig. 4.3.1-a). In a real flow field, if the actual 

conditions of pressure ( )p , temperature ( )T , density ( )ρ , enthalpy ( )h , internal 

energy ( )e , entropy ( )s etc. are referred to as static conditions while the associated 

stagnation parameters are denoted as 0 0 0 0 0 0, , , , andp T h e sρ , respectively. The 

stagnation state is fixed by using second law of thermodynamics where 0s s=  as 

represented in enthalpy-entropy diagram called as the Mollier diagram (Fig. 4.3.1-b).  

 

Fig 4.3.1: (a) Schematic representation of stagnation condition; (b) Mollier diagram.  
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The simplified form of energy equation for steady, one-dimensional flow with no 

heat addition, across two regions 1 and 2 of a control volume is given by,  

2 2
1 2

1 22 2
u uh h+ = +                                                    (4.3.1) 

For a calorically perfect gas, replacing, ph c T= , so the Eq. (4.3.1) becomes,    

2 2
1 2

1 22 2p p
u uc T c T+ = +                                                   (4.3.2) 

If the region ‘1’ refers to any arbitrary real state in the flow field and the region ‘2’ 

refers to stagnation condition, then Eq. (4.3.2) becomes, 

2

02p p
uc T c T+ =                                                        (4.3.3) 

It can be solved for ( )0T T  as, 

( ) ( )
2 2 2

0
2

2
20

1 1 1
2 2 1 2 1

1 1or, 1 1
2 2

p

T u u u
T c T RT a

T u M
T a

γ γ γ

γ γ

= + = + = +
− −

− −    = + = +    
    

                  (4.3.4) 

For an isentropic process, the thermodynamic relation is given by, 

1
0 0 0p T

p T

γγ
γρ

ρ
−   = =   

  
                                                   (4.3.5) 

From, Eqs (4.3.4) and (4.3.5), the following relations may be obtained for stagnation 

pressure and density. 

120

1
120

11
2

11
2

p M
p

M

γ
γ

γ

γ

ρ γ
ρ

−

−

− = + 
 

− = + 
 

                                                   (4.3.6) 

In general, if the flow field is isentropic throughout, the stagnation properties are 

constant at every point in the flow. However, if the flow in the regions ‘1’ and ‘2’ is 

non-adiabatic and irreversibile, then 01 02 01 02 01 02; ;T T p p ρ ρ≠ ≠ ≠
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Characteristics Conditions 

Consider an arbitrary flow field, in which a fluid element is travelling at some Mach 

number ( )M and velocity ( )V  at a given point ‘A’. The static pressure, temperature 

and density are , andp T ρ , respectively. Now, imagine that the fluid element is 

adiabatically slowed down ( )if 1M > or speeded up ( )if 1M <  until the Mach 

number at ‘A’ reaches the sonic state as shown in Fig. 4.3.2. Thus, the temperature 

will change in this process. This imaginary situation of the flow field when a real state 

in the flow is brought to sonic state is known as the characteristics conditions. The 

associated parameters are denoted as , , ,p T aρ∗ ∗ ∗ ∗  etc.  

 

Fig. 4.3.2: Illustration of characteristics states of a gas.  

Now, revisit Eq. (4.3.2) and use the relations for a calorically perfect gas, by 

replacing, and
1p

Rc a RTγ γ
γ

= =
−

. Another form of energy equation is obtained as 

below; 

2 2 2 2
1 1 2 2

1 2 1 2
a u a u
γ γ

+ = +
− −

                                                (4.3.7) 

 

At the imagined condition (point 2) of Mach 1, the flow velocity is sonic and 2u a∗= . 

Then the Eq. (4.3.7) becomes,  

2 2 2 2

2 2
2

1 2 1 2
1or,

1 2 2( 1)

a u a a

a u a

γ γ
γ

γ γ

∗ ∗

∗

+ = +
− −

+
+ =

− −

                                        (4.3.8) 
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Like stagnation properties, these imagined conditions are associated properties of any 

fluid element which is actually moving with velocity u .  If an actual flow field is 

non-adiabatic from A B→ , then A Ba a∗ ∗≠ .On the other hand if the general flow field is 

adiabatic throughout, then a∗ is a constant value at every point in the flow. Dividing 
2u both sides for Eq. (4.3.8) leads to, 

( )

( ) ( )

22

2
2

1 1
1 2 2( 1)

2or,
1 / 1

a u a
u

M
M

γ
γ γ

γ γ

∗

∗

 +
+ =  − −  

=
 + − − 

                                         (4.3.9) 

This equation provides the relation between actual Mach number ( )M and 

characteristics Mach number ( )M ∗ . It may be shown that when M approaches 

infinity, M ∗ reaches a finite value. From Eq. (4.3.9), it may be seen that 

1 1
1 1
1 1

1
1

M M
M M
M M

M M γ
γ

∗

∗

∗

∗

= ⇒ =

< ⇒ <

> ⇒ >

+
→∞ ⇒ →

−

                                            (4.3.10) 

Relations between stagnation and characteristics state 

The stagnation speed and characteristics speed of sound may be written as, 

0 0 ;a RT a RTγ γ∗ ∗= =                                                (4.3.11) 

Rewrite Eq. (4.3.7) for stagnation conditions as given below; 

22 2

1 2 1
oaa u

γ γ
+ =

− −
                                                  (4.3.12) 

Equate Eqs. (4.3.8) and (4.3.12), 

( )

22
2 0

0 0

1 2
2 1 1 1

a a Ta
a T

γ
γ γ γ

∗ ∗
∗  +
= ⇒ = = − − + 

                        (4.3.13) 
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More useful results may be obtained for Eqs. (4.3.4) & (4.3.6), when we define

; ; ; for Mach 1p p T T a aρ ρ∗ ∗ ∗ ∗= = = =   

 

1
1 1

0 0

2 2;
1 1

p
p

γ
γ γρ

γ ρ γ

∗ ∗− −   
= =   + +   

                                   (4.3.14) 

With 1.4γ =  (for air), the Eqs (4.3.13) & (4.3.14) reduces to constant value.  

 
2

0 0 0 0

0.833; 0.528; 0.634a T p
a T p

ρ
ρ

∗ ∗ ∗ ∗ 
= = = = 

 
                     (4.3.15) 

 

Critical speed and Maximum speed  

The critical speed of the gas ( )u∗ is same as that speed of sound ( )a∗ at sonic state i.e. 

at 1u a M∗ ∗= = . A gas can attain the maximum speed ( )maxu  when it is 

hypothetically expanded to zero pressure. The static temperature corresponding to this 

state is also zero. The maximum speed of the gas represents the speed corresponding 

to the complete transformation of kinetic energy associated with the random motion 

of gas molecules into the directed kinetic energy. Rearranging Eq. (4.3.3), one can 

obtain the following equation; 

2 0
0 max

2

max

0

21 ; At 0;
2 1

2or,
1

RTT T u T u u
R

u
a

γγ
γ γ

γ

 −
= + = = =  − 

 
=  − 

                  (4.3.16) 

Now, the Eqs (4.3.13) & (4.3.16) can be simplified to obtain the following relation;   

max 1
1

u
a

γ
γ∗

+
=

−
                                                            (4.3.17) 
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Steady Flow Adiabatic Ellipse  

It is an ellipse in which all the points have same total energies. Each point differs 

from the other owing to relative proportions of thermal and kinetic energies 

corresponding to different Mach numbers. Now, rewrite Eq. (4.3.3) by replacing 

and
1p

Rc a RTγ γ
γ

= =
−

;  

2
2 2

1
2

2 1 1
u R T c u a cγ

γ γ
 

+ = ⇒ + = − − 
                                  (4.3.18) 

When, max0,T u u= =  so that the constant appearing in Eq. (4.3.18) can be considered 

as, 2
maxc u= . Then, Eq. (4.3.18) is written as follows; 

2 2
2 2 2

max 2 2
max max

2 2 1
1 1

u au a u
u uγ γ

   
+ = ⇒ + =   − −   

                      (4.3.19) 

Replacing the value of 2
maxu from Eq. (4.3.16) in Eq. (4.3.19), one can write the 

following expression; 

2 2

2 2
max 0

1u a
u a

+ =                                                     (4.3.20) 

This is the equation of an ellipse with major axis as maxu and minor axis as 0a  as 

shown in Fig. 4.3.3. Now, rearrange Eq. (4.3.20) in the following form; 

 
2

2 2 2
0 02

max

ua a a
u

 
= −  

 
                                                    (4.3.21) 

Now, differentiate Eq. (4.3.21) with respect to u  and simplify; 

 1 1 2
2 2 1

da u daM M
du a du

γ γ
γ

 − −    = − = − ⇒ = −      −      
              (4.3.22) 
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Fig. 4.3.3: Steady flow adiabatic ellipse.  

Thus, the change of slope from point to point on the ellipse indicates the change in 

Mach number and hence the speed of sound and velocity. So, it gives the direct 

comparison of the relative magnitudes of thermal and kinetic energies. Different 

compressible flow regimes can be obtained with the knowledge of slope in Fig. 4.3.2. 

The following important inferences may be drawn;   

- In high Mach numbers flows, the changes in Mach number are mainly due to 

the changes in speed of sound.  

- At low Mach numbers flows, the changes in Mach number are mainly due to 

the changes in the velocity.  

- When the flow Mach number is below 0.3, the changes in speed of sound is 

negligible small and the flow is treated as incompressible.    
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Module 4 : Lecture 4 
COMPRESSIBLE FLOWS 
(One-Dimensional Analysis) 

 

Mach Waves 

Consider an aerodynamic body moving with certain velocity ( )V  in a still air. When 

the pressure at the surface of the body is greater than that of the surrounding air, it 

results an infinitesimal compression wave that moves at speed of sound ( )a . These 

disturbances in the medium spread out from the body and become progressively 

weaker away from the body. If the air has to pass smoothly over the surface of the 

body, the disturbances must ‘warn’ the still air, about the approach of the body. Now, 

let us analyze two situations: (a) the body is moving at subsonic speed ( ); 1V a M< < ; 

(b) the body is moving at supersonic speed ( ); 1V a M> > .  

Case I: During the motion of the body, the sound waves are generated at different 

time intervals ( )t  as shown in Fig. 4.4.1. The distance covered by the sound waves 

can be represented by the circle of radius ( ), 2 ,3 .......soonat at at . During same time 

intervals ( )t , the body will cover distances represented by, , 2 , 3 .......soonVt Vt Vt . At 

subsonic speeds ( ); 1V a M< < , the body will always remains inside the family of 

circular sound waves. In other words, the information is propagated through the sound 

wave in all directions. Thus, the surrounding still air becomes aware of the presence 

of the body due to the disturbances induced in the medium. Hence, the flow adjusts 

itself very much before it approaches the body.  

Case II: Consider the case, when the body is moving at supersonic speed 

( ); 1V a M> > . With a similar manner, the sound waves are represented by circle of 

radius ( ), 2 ,3 .......soonat at at  after different time ( )t intervals. By this time, the body 

would have moved to a different location much faster from its initial position. At any 

point of time, the location of the body is always outside the family of circles of sound 

waves. The pressure disturbances created by the body always lags behind the body 

that created the disturbances. In other words, the information reaches the surrounding 
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air much later because the disturbances cannot overtake the body. Hence, the flow 

cannot adjust itself when it approaches the body. The nature induces a wave across 

which the flow properties have to change and this line of disturbance is known as 

“Mach wave”. These mach waves are initiated when the speed of the body approaches 

the speed of sound ( ); 1V a M= = . They become progressively stronger with increase 

in the Mach number.    

 

Fig. 4.4.1: Spread of disturbances at subsonic and supersonic speeds. 

Some silent features of a Mach wave are listed below; 

- The series of wave fronts form a disturbance envelope given by a straight line 

which is tangent to the family of circles. It will be seen that all the disturbance 

waves lie within a cone (Fig. 4.4.1), having a vertex/apex at the body at time 

considered. The locus of all the leading surfaces of the waves of this cone is 

known as Mach cone.  

- All disturbances confine inside the Mach cone extending downstream of the 

moving body is called as zone of action. The region outside the Mach cone 

and extending upstream is known as zone of silence. The pressure disturbances 

are largely concentrated in the neighborhood of the Mach cone that forms the 

outer limit of the zone of action (Fig. 4.4.2).  
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- The half angle of the Mach cone is called as the Mach angle ( )mµ that can be 

easily calculated from the geometry of the Fig. 4.4.1.  

( )
( )

( )
( )

12 3 1 1sin ....... sin
2 3m m

a t a tat a
Vt V t V t V M M

µ µ −  = = = = = ⇒ =  
 

            (4.4.1) 

 

Fig. 4.4.2: Illustration of a Mach wave.  

Shock Waves 

Let us consider a subsonic and supersonic flow past a body as shown in Fig. 4.3.3. In 

both the cases, the body acts as an obstruction to the flow and thus there is a change in 

energy and momentum of the flow. The changes in flow properties are communicated 

through pressure waves moving at speed of sound everywhere in the flow field (i.e. 

both upstream and downstream). As shown in Fig. 4.3.3(a), if the incoming stream is 

subsonic i.e. 1;M V a∞ ∞ ∞< < , the sound waves propagate faster than the flow speed 

and warn the medium about the presence of the body. So, the streamlines approaching 

the body begin to adjust themselves far upstream and the flow properties change the 

pattern gradually in the vicinity of the body. In contrast, when the flow is supersonic, 

(Fig. 4.3.3-b) i.e. 1;M V a∞ ∞ ∞> > , the sound waves overtake the speed of the body 

and these weak pressure waves merge themselves ahead of the body leading to 

compression in the vicinity of the body. In other words, the flow medium gets 

compressed at a very short distance ahead of the body in a very thin region that may 

be comparable to the mean free path of the molecules in the medium. Since, these 

compression waves propagate upstream, so they tend to merge as shock wave.  Ahead 

of the shock wave, the flow has no idea of presence of the body and immediately 

behind the shock; the flow is subsonic as shown in Fig. 4.3.3(b).  
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The thermodynamic definition of a shock wave may be written as “the 

instantaneous compression of the gas”. The energy for compressing the medium, 

through a shock wave is obtained from the kinetic energy of the flow upstream the 

shock wave. The reduction in kinetic energy is accounted as heating of the gas to a 

static temperature above that corresponding to the isentropic compression value. 

Consequently, in flowing through the shock wave, the gas experiences a decrease in 

its available energy and accordingly, an increase in entropy.  So, the compression 

through a shock wave is considered as an irreversible process. 

 

Fig. 4.4.3: Illustration of shock wave phenomena. 

Normal Shock Waves 

A normal shock wave is one of the situations where the flow properties change 

drastically in one direction. The shock wave stands perpendicular to the flow as 

shown in Fig. 4.4.4. The quantitative analysis of the changes across a normal shock 

wave involves the determination of flow properties. All conditions of are known 

ahead of the shock and the unknown flow properties are to be determined after the 

shock. There is no heat added or taken away as the flow traverses across the normal 

shock. Hence, the flow across the shock wave is adiabatic ( )0q = .  

 

Fig. 4.4.4: Schematic diagram of a standing normal shock wave.  
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The basic one dimensional compressible flow equations can be written as below;   

2 2
2 2 1 2

1 1 2 2 1 1 1 2 2 2 1 2; ;
2 2

u uu u p u p u h hρ ρ ρ ρ= + = + + = +                    (4.4.2) 

For a calorically perfect gas, thermodynamic relations can be used, 

; ; /pp RT h c T a pρ γ ρ= = =                                             (4.4.3) 

The continuity and momentum equations of Eq. (4.4.2) can be simplified to obtain,  
2 2
1 2

2 1
1 2

a a u u
u uγ γ
− = −                                                     (4.4.4) 

Since, a RTγ∗ ∗=  and VM
a

∗
∗= , the energy equation is written as,  

2 2
2 2 2 21 1 1

1 2 2( 1) 2 2
a u a a a uγ γ γ
γ γ

∗ ∗+ + −
+ = ⇒ = −

− −
                         (4.4.5) 

Both 2 2
1 2anda a  can now be expressed as,  

 ( ) ( )2 22 2 2 2
1 1 2 2

1 1 1 1;
2 2 2 2

a a u a a uγ γ γ γ∗ ∗+ − + −
= − = −                       (4.4.6) 

Substitute Eqs. (4.4.6) in Eq. (4.4.4) and solve for  2a∗  

2
1 2 2

1

1a u u M
M

∗ ∗
∗= ⇒ =                                               (4.4.7)                                                          

Recall the relation for andM M ∗  and substitute in Eq. (4.4.7),  

( )
( )

2
2

2

1
2 1

M
M

M
γ
γ

∗ +
=

+ +
                                                 (4.4.8) 

Substitute Eq. (4.4.8) in Eq. (4.4.7) and solve for 2M  

2
1

2
2

2
1

11
2

1
2

M
M

M

γ

γγ

− +  
 =

− −  
 

                                                  (4.4.9) 

Using continuity equation and Prandtl relation, we can write, 

( )
2 2 22 1 1 1

12
1 2 1 2

u u u M
u u u a

ρ
ρ

∗
∗= = = =                                       (4.4.10) 
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Substitute Eq. (4.4.8) in Eq. (4.4.10) and solve for density and velocity ratio across 

the normal shock.  

( )
( )

2
12 1

2
1 2 1

1
2 1

Mu
u M

γρ
ρ γ

+
= =

+ −
                                           (4.4.11) 

The pressure ratio can be obtained by the combination of momentum and continuity 

equations i.e. 

( ) 2 22 2 1 2
2 1 1 1 1 2 1 1 1

1 1 1

1 ; 1u p p up p u u u u M
u p u

ρ ρ γ
   −

− = − = − ⇒ = −   
   

        (4.4.12) 

Substituting the ratio 1

2

u
u

 
 
 

from Eq. (4.4.10) in Eq. (4.4.12) and simplifying for the 

pressure ratio across the normal shock, we get,  

( )22
1

1

21 1
1

p M
p

γ
γ

= + −
+

                                           (4.4.13) 

For a calorically perfect gas, equation of state relation (Eq. 4.4.3) can be used to 

obtain the temperature ratio across the normal shock i.e. 

( ) ( )
( )

2
122 2 2 1

1 2
1 1 1 2 1

2 121 1
1 1

Mh T p M
h T p M

γρ γ
ρ γ γ

 + −    
= = = + −      + +     

             (4.4.14) 

Thus, the upstream Mach number is the powerful tool to dictating the shock wave 

properties. The “stagnation properties” across the normal shock can be computed as 

follows;  

( )
( )

02 202 2

01 01 1 1

p pp p
p p p p

 
=  

 
                                                   (4.4.15) 
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Here, the ratios 01 02

1 2

andp p
p p

   
   
   

can be obtained from the isentropic relation for the 

regions ‘1 and 2’ respectively. Knowing the upstream Mach number 1M , Eq. (4.4.9) 

gives the downstream Mach number 2M . Further, Eq. (4.4.13) can be used to obtain 

the static pressure ratio 2

1

p
p

 
 
 

 . After substitution of these ratios, Eq. (4.4.15) reduces 

to, 

( )
12

2
202

1
01 12

1

11
22 1 1

111
2

M
p M
p

M

γ
γ

γ
γ

γ
γ

γγ

−

−

− +    = + − + − + 
 

                         (4.4.16) 

Many a times, another significant pressure ratio 02

1

p
p

 
 
 

is important for a normal 

shock which is normally called as Rayleigh Pitot Tube relation.  

( )12 202 02 022
2 1

1 2 1 1

1 21 1 1
2 1

p p pp M M
p p p p

γ
γγ γ

γ
−    − = ⇒ = + + −      +     

           (4.4.17) 

Recall the energy equation for a calorically perfect gas:  
2 2
1 2

1 2 01 012 2p p p p
u uc T c T c T c T+ = + ⇒ =                                      (4.4.18) 

Thus, the stagnation temperatures do not change across a normal shock.  

 

Entropy across a normal shock 

The compression through a shock wave is considered as irreversible process leading 

to an increase in entropy. The change in entropy can be written as a function of static 

pressure and static temperature ratios across the normal shock.  

2 2
2 1

1 1

ln lnp
T ps s c R
T p

   
− = −   

   
                                         (4.4.19) 

Mathematically, it can be seen that the entropy change across a normal shock is also a 

function of the upstream Mach number. The second law of thermodynamics puts the 

limit that ‘entropy’ must increase ( )2 1 0s s− ≥ for a process to occur in a certain 
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direction. Hence, the upstream Mach number ( )1M  must be greater than 1 (i.e. 

supersonic). It leads to the fact that ( ) ( ) ( )2 2 1 2 1 2 11; 1; 1; 1M p p T Tρ ρ≤ ≥ ≥ ≥ .  

 The entropy change across a normal shock can also be calculated from another 

simple way by expressing the thermodynamic relation in terms of total pressure. 

Referring to Fig. 4.4.4, it is seen that the discontinuity occurs only in the thin region 

across the normal shock. If the fluid elements is brought to rest isentropically from its 

real state (for both upstream and downstream conditions), then they will reach an 

imaginary state ‘1a and 2a’. The expression for entropy change between the 

imaginary states can be written as,  

2 2
2 1

1 1

ln lna a
a a p

a a

T ps s c R
T p

   
− = −   

   
                                         (4.4.20) 

Since, 2 2 1 1 2 1 0 2 02 1 01; ; ; anda a a a a as s s s T T T p p p p= = = = = = , the Eq.(4.4.20) reduces 

to,  

( )2 102 02
2 1

01 01

ln s s Rp ps s R e
p p

− − 
− = − ⇒ = 

 
                                  (4.4.21) 

Because of the fact 2 1s s> , Eq. (4.4.21)  implies that 02 01p p< . Hence, the stagnation 

pressure always decreases across a normal shock.  
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Module 4 : Lecture 5 
COMPRESSIBLE FLOWS 
(Two-Dimensional Analysis) 

 

Oblique Shock Wave 

The normal shock waves are straight in which the flow before and after the wave is 

normal to the shock. It is considered as a special case in the general family of oblique 

shock waves that occur in supersonic flow. In general, oblique shock waves are 

straight but inclined at an angle to the upstream flow and produce a change in flow 

direction as shown in Fig. 4.5.1(a). An infinitely weak oblique shock may be defined 

as a Mach wave (Fig. 4.5.1-b). By definition, an oblique shock generally occurs, when 

a supersonic flow is ‘turned into itself” as shown in Fig. 4.5.1(c). Here, a supersonic 

flow is allowed to pass over a surface, which is inclined at an angle ( )θ  to the 

horizontal. The flow streamlines are deflected upwards and aligned along the surface. 

Since, the upstream flow is supersonic; the streamlines are adjusted in the 

downstream an oblique shock wave angle ( )β  with the horizontal such that they are 

parallel to the surface in the downstream. All the streamlines experience same 

deflection angle across the oblique shock. 

 

Fig. 4.5.1: Schematic representation of an oblique shock.  
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Oblique Shock Relations 

Unlike the normal shocks, the analysis of oblique shocks is prevalent mainly in the 

two-dimensional supersonic flows. The flow field properties are the functions of 

andx y as shown in Fig. 4.5.2. In the upstream of the shock, the streamlines are 

horizontal where, the Mach number and velocity of the flow are 1 1andM V , 

respectively. The flow is deflected towards the shock in the downstream by angle θ  
such that the Mach number and velocity becomes 2 2andM V , respectively. The 

components of 1V , parallel and perpendicular to the shock are 1 1andu v , respectively. 

Similarly, the analogous components for 2V  are, 2 2andu v  respectively. The normal 

and tangential Mach numbers ahead of the shock are 1 1andn tM M while the 

corresponding Mach numbers behind the shock are, 2 2andn tM M respectively.  

 

Fig. 4.5.2: Geometrical representation of oblique shock wave.  

The continuity equation for oblique shock is, 

1 1 2 2u uρ ρ=                                                        (4.5.1) 

Considering steady flow with no body forces, the momentum equation can be 

resolved in tangential and normal directions.   

( ) ( )
( ) ( ) ( )

1 1 1 2 2 2

1 1 1 2 2 2 1 2

Tangentialcomponent: 0

Normalcomponent:

u v u v

u u u u p p

ρ ρ

ρ ρ

− + =

− + = − − +
                (4.5.2) 

Substitute Eq. (4.5.1) in Eq. (4.5.2), 

 2 2
1 2 1 1 1 2 2 2;v v p u p uρ ρ= + = +                                           (4.5.3) 
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Thus, it is seen that the tangential component of flow velocity does not change across 

an oblique shock.  

Finally, the energy equation gives, 

( )
2 2 2 2

1 2 1 2
1 1 2 2 1 1 1 2 1 2 1 22 2 2 2

V V V Vp u p u e u e u h hρ ρ
       

− − + = − + + + ⇒ + = +       
       

   

(4.5.4) 

From the geometry of the Fig. 4.5.2, 2 2 2
1 2andV u v v v= + = , hence 

( ) ( )2 2 2 2 2 2 2 2
1 2 1 1 2 2 1 2V V u v u v u u− = + − + = −                                  (4.5.5) 

So, the energy equation becomes, 

2 2
1 2

1 22 2
u uh h

   
+ = +   

   
                                                       (4.5.6) 

Examining the Eqs (4.5.1, 4.5.3 and 4.5.6), it is noted that they are identical to 

governing equations for a normal shock. So, the flow properties changes in the 

oblique shock are governed by the normal component of the upstream Mach number. 

So, the similar expressions can be written across an oblique shock in terms of normal 

component of free stream velocity i.e.  

( )
( )

( )
( ) ( )

( )

2
22

1 1 2 2
1

2
1 22 2 2 2 1

12
1 1 1 1 1 2

2 2 2
2 2 1

1 1

2 / 1
sin ;

2 / 1 1

1 2; 1 1 ;
2 1 1

; ln ln
sin

n
n n

n

n
n

n

n
p

M
M M M

M

M p T pM
M p T p

M T pM s s c R
T p

γ
β

γ γ

γρ ργ
ρ γ γ ρ

β θ

 + −  = =   − −   
+

= = + − =
+ − +

   
= − = −   −    

            (4.5.7) 

Thus, the changes across an oblique shock are function of upstream Mach number 

( )1M and oblique shock angle ( )β  while the normal shock is a special case when

2
πβ = .  
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Referring to geometry of the oblique shock (Fig. 4.5.2-b),   

  ( )1 2

1 2

tan ; tanu u
v v

β β θ= − =                                             (4.5.8)   

Since, 1 2v v= , Eq. (4.5.8) reduces to, 

( ) 2 1

1 2

tan
tan

u
u

β θ ρ
β ρ
−

= =                                                  (4.5.9)   

Use the relations given in Eq. (4.5.7) and substituting them in Eq. (4.5.9), the 

trigonometric equation becomes,  

( )
2 2

1
2

1

sin 1tan 2cot
cos 2 2

M
M

βθ β
γ β

 −
=  + + 

                                     (4.5.10) 

It is a famous relation showing θ  as the unique function of 1and Mβ . Eq. (4.5.10) is 

used to obtain the Mθ β− − curve (Fig. 4.5.3) for 1.4γ = .  

 

Fig. 4.5.3: Mθ β− − curves for an oblique shock.  
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The following inferences may be drawn from Mθ β− − curves. It is seen that there is 

a maximum deflection angle maxθ . 

- For any given 1M , if, maxθ θ< , the oblique shock will be attached to the body 

(Fig. 4.5.4-a). When maxθ θ> , there will be no solution and the oblique shock 

will be curved and detached as shown in Fig. 4.5.4(b). The locus of maxθ can be 

obtained by joining the points (a1, b1, c1, d1, e1 and f1) in the Fig. 4.5.3.   

- Again, if maxθ θ< , there will be two values of β  predicted from Mθ β− −

relation. Large value of β  corresponds to strong shock solution while small 

value refers to weak shock solution (Fig. 4.5.4-c). In the strong shock solution, 
2M is subsonic while in the weak shock region, 2M is supersonic. The locus of 

such points (a2, b2, c2, d2, e2 and f2) as shown in Fig. 4.5.3, is a curve that also 

signifies the weak shock solution. The conditions behind the shock could be 

subsonic if  θ  becomes closer to  maxθ .           

- If 0θ = , it corresponds to a normal shock when 
2
πβ =  and the oblique shock 

becomes a Mach wave when mβ µ= .  

 

Fig. 4.5.4: (a) Attached shock; (b) Detached shock; (c) Strong and weak shock. 
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Oblique Expansion Waves 

Another class of two dimensional waves occurring in supersonic flow shows the 

opposite effects of oblique shock. Such types of waves are known as expansion 

waves. When the supersonic flow is “turned away from itself”, an expansion wave is 

formed as shown in Fig. 4.5.5(a). Here, the flow is allowed to pass over a surface 

which is inclined at an angle ( )θ  to the horizontal and all the flow streamlines are 

deflected downwards. The change in flow direction takes place across an expansion 

fan centered at point ‘A’. The flow streamlines are smoothly curved till the 

downstream flow becomes parallel to the wall surface behind the point ‘A’. Here, the 

flow properties change smoothly through the expansion fan except at point ‘A’. An 

infinitely strong oblique expansion wave may be called as a Mach wave. An 

expansion wave emanating from a sharp convex corner is known as a centered 

expansion which is commonly known as Prandtl-Meyer expansion wave. Few 

features of PM expansion waves are as follows; 

- Streamlines through the expansion wave are smooth curved lines. 

- The expansion of the flow takes place though an infinite number of Mach 

waves emitting from the center ‘A’. It is bounded by forward and rearward 

Mach lines as shown in Fig. 4.5.5(b). These Mach lines are defined by Mach 

angles i.e. 

( )
( )

1
1 1

1
2 2

Forward Mach angle: sin 1

Rearward Mach angle: sin 1
m

m

M

M

µ

µ

−

−

=

=
                            (4.5.11) 

- The expansion takes place through a continuous succession of Mach waves 

such that there is no change in entropy for each Mach wave. Thus, the 

expansion process is treated as isentropic.  

- The Mach number increases while the static properties such as pressure, 

temperature and density decrease during the expansion process. 
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Fig. 4.5.5: Schematic representation of an expansion fan.  

The quantitative analysis of expansion fan involves the determination of 

2 2 2 2, , andM p T ρ for the given upstream conditions of 1 1 1 1 2, , , andM p T ρ θ . Consider 

the infinitesimal changes across a very weak wave (Mach wave) as shown in Fig.  

4.5.6.  

 

Fig. 4.5.6: Infinitesimal change across a Mach wave.  

From the law of sine, 

sin
21

sin
2

m

m

V dV dV
V V d

π µ

π µ θ

 + +  = + =
 − − 
 

                                  (4.5.12) 
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Use trigonometric identities and Taylor series expansion, Eq. (4.5.12) can be 

simplified as below;  

                  ( )
tan m

dV V
dθ

µ
=                                                         (4.5.13) 

Since, 
2

1 1sin tan
1

m mM M
µ µ= ⇒ =

−
, so the Eq. (4.5.13)  can be simplified and 

integrated further from region ‘1’ to ‘2’, 

2 2

1 1

2 21 1
M

M

dV dVd M d M
V V

θ

θ

θ θ= − ⇒ = −∫ ∫                        (4.5.14) 

From the definition of Mach number, 

    
dV dM daV Ma
V M a

= ⇒ = +                                             (4.5.15) 

For a calorically perfect gas, the energy equation can be written as, 

 
2 1

2 21 1 11 1
2 2 2

oa daM M M dM
a a

γ γ γ −− − −     = + ⇒ = − +    
    

            (4.5.16) 

Use Eqs (4.5.15 & 4.5.16) in Eq. (4.5.14) and integrate from 20 toθ θ= , 

2 2

1 1

2

2
2

10 11
2

M

M

M dMd
MM

θ

θ

θ θ γ
−

= − =
−

+
∫ ∫                                  (4.5.17) 

The integral in the Eq. (4.5.18) is known as Prandtl-Meyer function, ( )Mν .  

( ) ( )
2

1 2 1 2

2

1 1 1tan 1 tan 11 1 11
2

M dMM M M
MM

γ γν γ γ γ
− − − + −

= = − − − − − + +
∫     (4.5.18)                                  

Finally, Eq. (4.5.17) reduces to,  

( ) ( )2 2 1M Mθ ν ν= −                                          (4.5.19) 

Thus, for a given upstream Mach number 1M , one can obtain ( )1Mν , subsequently 

calculate using given ( )2 2andMν θ . Since, the expansion process is isentropic, the 

flow properties can be calculated from isentropic relations.  
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Module 4 : Lecture 6 
COMPRESSIBLE FLOWS 
(Hypersonic Flow: Part - I) 

 

Introduction to Hypersonic Flow 

The hypersonic flows are different from the conventional regimes of supersonic 

flows. As a rule of thumb, when the Mach number is greater than 5, the flow is 

classified as hypersonic. However, the flow does not change its feature all of a sudden 

during this transition process. So, the more appropriate definition of hypersonic flow 

would be regime of the flow where certain physical flow phenomena become more 

important with increase in the Mach number. One of the physical meanings may be 

given to the Mach number as the measure of the ordered motion of the gas to the 

random thermal motion of the molecules. In other words, it is the ratio of ordered 

energy to the random energy as given in Eq. (4.6.1).  

( )
( )

2
2

2

1 2 V Ordered kinetic energyM
1 2 a Random kinetic energy

= =                              (4.6.1) 

In the case of hypersonic flows, it is the directed/ordered kinetic energy that 

dominates over the energy associated with random motion of the molecules. Now, 

recall the energy equation expressed in the form of flow velocity ( )V , speed of sound 

( )a RTγ= and stagnation speed of sound ( )0 0a RTγ= . 

2 22 2 2
0

0 0

1 1
1 1 2 2

a a V a V
a a

γ
γ γ

   − = + ⇒ + =    − −     
                          (4.6.2) 

Eq. (4.6.2) forms an adiabatic ellipse which is obtained for steady flow energy 

equation. When the flow approaches the hypersonic limit, the ratio becomes 
0

1a
a
 . 

Then, Eq. (4.6.2) simplifies to the following expression.  
2

2 0 02 2
1 1

a RTV γ
γ γ

≈ ≈
− −

                                               (4.6.3) 

In other words, the entire kinetic energy of the flow gets converted to internal energy 

of the flow which is a function total temperature ( )0T of the flow.  
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The study/research on hypersonic flows revels many exciting and unknown flow 

features of aerospace vehicles in the twenty-first century. The presence of special 

features in a hypersonic flow is highly dependent on type of trajectory, configuration 

of the vehicle design, mission requirement that are decided by the nature of 

hypersonic atmosphere encountered by the flight vehicle. Therefore, the hypersonic 

flight vehicles are classified in four different types, based on the design constraints 

imposed from mission specifications.  

- Reentry vehicles (uses the rocket propulsion system) 

- Cruise and acceleration vehicle (air-breathing propulsion such as 

ramjet/scramjet) 

- Reentry vehicles (uses both air-breathing and rocket propulsion) 

- Aero-assisted orbit transfer vehicle (presence of ions and plasma in the 

vicinity of spacecraft) 

 

Characteristics Features of Hypersonic Flow 

There are certain physical phenomena that essentially differentiate the hypersonic 

flows as compared to the supersonic flows. Even though, the flow is treated as 

supersonic, there are certain special features that appear when the speed of the flow is 

more than the speed of sound typically beyond the Mach number of 5. Some of these 

characteristics features are listed here; 

Thin shock layer: It is known from oblique shock relation ( )Mθ β− − that the shock 

wave angle ( )β decreases with increase in the Mach number ( )M  for weak shock 

solution. With progressive increase in the Mach number, the shock wave angle 

reaches closer to the flow deflection angle ( )θ . Again, due to increase in temperature 

rise across the shock wave, if chemical reaction effects are included, the shock wave 

angle will still be smaller. Since, the distance between the body and the shock wave is 

small, the increase in the density across the shock wave results in very high mass 

fluxes squeezing through small areas. The flow region between the shock wave and 

the body is known as thin shock layer as shown in Fig. 4.6.1(a). It is the basic 

characteristics of hypersonic flows that shock waves lie closer to the body and shock 

layer is thin. Further, the shock wave merges with the thick viscous boundary layer 

growing from the body surface. The complexity of flow field increases due to thin 
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shock layer where the boundary layer thickness and shock layer thickness become 

comparable.  

 
Fig. 4.6.1: Few important phenomena in a hypersonic flow: (a) Thin shock layer; (b) Entropy layer; (c) Temperature 

profile in a boundary layer; (d) High temperature shock layer; (e) Low density effects.   
 

Entropy layer: The aerodynamic body configuration used in hypersonic flow 

environment is typically blunt to avoid thin shock layers to be closer to the body. So, 

there will be a detached bow shock standing at certain distance from the nose of the 

body and this shock wave is highly curved (Fig. 4.6.1-b). Since, the flow process 

across the shock is a non-isentropic phenomena, an entropy gradient is developed that 

varies along the distance of the body. At the nose portion of the blunt body, the bow 

shock resembles normal to the streamline and the centerline of the flow will 

experience a larger entropy gradient while all other neighboring streamlines undergo 

the entropy changes in the weaker portion of the shock. It results in an entropy layer 

that persists all along the body. Using the classical Crocco’s theorem, the entropy 

layer may be related to vorticity. Hence, the entropy layer in high Mach number 

flows, exhibits strong gradient of entropy which leads to higher vorticity at higher 

magnitudes. Due to the presence of entropy layer, it becomes difficult to predict the 

boundary layer properties. This phenomenon in the hypersonic flow is called as 

vortcity generation. In addition to thin shock layer, the entropy layer also interacts 
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with viscous boundary layer that leads to very complicated and unknown flow 

features.  

Viscous-Inviscid interaction: When a high velocity, hypersonic flow is slowed down 

in the vicinity of the aerodynamic body due to viscous effects within the boundary 

layer, the major portion of the kinetic energy is transformed into the internal energy of 

the gas known as viscous dissipation leading to increase in temperature. For a cold 

wall, the typical temperature profile in a boundary layer is shown in Fig. 4.6.1(c). 

Since, the pressure is constant in the normal direction through the boundary layer, the 

increase in temperature results decrease in density. In order to pass through a given 

mass flux at reduced density, the thickness of the boundary layer must be larger. 

Thus, the displacement thickness increases, causing the body shape to appear much 

thicker and displacing outer inviscid flow. Hence, the free stream flow encounters an 

inflated object which changes the shock shape and in turn boundary layer parameters 

such as surface pressure, wall heat flux, skin friction etc. Again, when the boundary 

layer becomes thick, it essentially merges with the thin shock layer. Thus, there are 

major interactions of viscous boundary layer, thin shock layer and outer inviscid 

flows. This phenomenon is known as viscous-inviscid interaction and has important 

effect on the surface pressures and the stability of hypersonic vehicles.  

High temperature effects: The kinetic energy of the high speed, hypersonic flow is 

dissipated by the effect of friction within the boundary layer (Fig. 4.6.1-d). The 

extreme viscous dissipation can result in substantial increase in temperature (~10000 

K) exciting the vibration within the molecules and can cause dissociation, ionization 

in the gas. Typically, in the range of 2000K-4000K, the oxygen molecules start 

dissociating and with increase in temperature, dissociation of nitrogen molecules 

takes place. Further increase in temperature (> 9000 K), ionization of both oxygen 

and nitrogen can start. This leads to chemical reaction within the boundary layer. As a 

result, the gases within the boundary layer will have variable specific heat ratio and 

gas constant which are functions of both temperature and pressure. Therefore 

treatment of air or any fluid flowing with hypersonic speed over any configuration 

should be done properly by incorporating all the microscopic changes which 

essentially leads to change in thermodynamic properties with temperature. If the 

vibrational excitation and chemical reactions takes place very rapidly in comparison 

to time taken by the fluid element to move in the flow field, then it is called as 

equilibrium flow. When there is sufficient time lag, then it is treated as non-
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equilibrium flow. All these phenomena are called as high temperature real gas effects.  

The presence of high temperature reacting plasma in the vicinity of the flight vehicle 

influence the  aerodynamic parameters, aerodynamic heating and subsequently, 

communication is blocked. Flight parameters like pitch, roll, drag, lift, defection of 

control surfaces get largely deviated from their usual estimate of calorically perfect 

gas. The presence of hot fluid in the vicinity of vehicle surface induces heat transfer 

not only through convection but also through radiation. Communication waves which 

are necessarily radio waves get absorbed by free electrons formed from ionization of 

atmospheric fluid. This phenomenon is called as communication blackout where on 

board flight parameters and ground communication is lost.  

Low density flow: At standard sea level conditions, all the fluids are treated as 

continuum so that the global behavior is same as that of average fluid properties. In 

these conditions, the fluid contains certain desired number of molecules and the 

average distance between two successive collisions of the molecules is specified by its 

mean free path ( )97 10 mλ −≈ × . Since, the hypersonic flows are encountered at very 

high altitude (~100 km), the density of the medium is very less and the mean free path 

may be in the order of 0.3m. So, the air is no longer a continuous substance, rather 

treated as individual and widely spaced particles in the matter. Under these 

conditions, all the fundamental equations based on continuum assumption break down 

and they are dealt with the concepts of kinetic theory. This regime of the 

aerodynamics is known as low-density flows. Further increase in altitude (~ 150 km), 

the air density becomes so low that only a few molecules impact on the surface per 

unit time. This regime of flow is known as free molecular flow. Thus, a hypersonic 

vehicle moves in different flow regimes during the course of its flight i.e. from a 

dense atmosphere to a rarefied atmosphere. The similarity parameter that governs 

different regimes of the flow for certain characteristic dimension L , is then defined as 

Knudsen number ( )Kn .  

Kn
L
λ

=                                                        (4.6.4) 
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Large value of Kn implies free molecular flow ( )Kn →∞  while small value of Kn is 

the regime of continuum flow ( )Kn 0.2<  as shown in Fig. 4.6.1(e). In the inviscid 

limit, the value of Kn approaches to zero while the free molecular flow regime begins 

with Kn 1= . In the low density regimes, the Boltzmann equation is used to deal with 

the fundamental laws.  

 
Fig. 4.6.2: Characteristics features of hypersonic flow. 

From these characteristics of hypersonic flows, it is clear that Mach number to be 

greater than 5 is the most formal definition of hypersonic flow rather it is desired to 

have some of the characteristics features summarized in Fig. 4.6.2. It is more 

important that one of these characteristics features should appear in the flow 

phenomena so that the definition becomes more appropriate. There are many 

challenges for experimental simulation of hypersonic flow in the laboratory.  

Understanding the challenges faced by hypersonic flight and driving solutions these 

problems on case to case basic are the most research themes on hypersonic flows.   
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Module 4 : Lecture 7 
COMPRESSIBLE FLOWS 
(Hypersonic Flow: Part - II) 

 

Inviscid Hypersonic Flow Relations 

In general, the hypersonic flows are characterized with viscous boundary layers 

interacting the thin shock layers and entropy layers. The analysis of such flow fields is 

very complex flows and there are no standard solutions. In order to get some 

quantitative estimates, the flow field at very high Mach numbers is generally analyzed 

with inviscid assumption so that the mathematical complications are simplified. In 

conventional supersonic flows, the shock waves are usually treated as mathematical 

and physical discontinuities. At hypersonic speeds, some approximate forms of shock 

and expansion relations are obtained in the limit of high Mach numbers. 

 

Hypersonic shock relations  

Consider the flow through a straight oblique shock as shown in Fig. 4.7.1(a). The 

notations have their usual meaning and upstream and downstream conditions are 

denoted by subscripts ‘1’ and ‘2’, respectively. Let us revisit the exact oblique shock 

relations and simplify them in the limit of high Mach numbers.  

 
Fig. 4.7.1: Geometry of shock and expansion wave: (a) oblique shock; (b) centered expansion wave. 
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The exact oblique shock relations for pressure, temperature and density ratio across 

the wave are given by, 

( ) ( )
( )

( )
( )

2 2
1 2 12 22 2 2

1 2 2
1 1 1 1 2 1

1 sin21 sin 1 ; ;
1 2 1 sin

M p pp TM
p M T

γ βργ β
γ ρ γ β ρ ρ

+
= + − = =

+ + −
     (4.7.1) 

As, 2 2
1 1 sin 1M M β→∞ ⇒  , so that Eq. (4.7.1) becomes,  

( )
( )

2 2 2 22 2 2
1 12

1 1 1

2 12 1sin ; ; sin
1 1 1

p TM M
p T

γ γργ γβ β
γ ρ γ γ

−+
= = =

+ − +
             (4.7.2) 

It may be noted that for air ( )1.4γ = flow in the hypersonic speed limit, the density 

ratio approaches to a fixed value of 6. The velocity components behind the shock 

wave, parallel and perpendicular to the upstream flow, may be computed from the 

following relations; 

( )
( )

( )
( )

2 2 2 2
1 12 2

2 2
1 1 1 1

2 sin 1 2 sin 1 cot
1 ;

1 1
M Mu v

V M V M
β β β

γ γ

− −
= − =

+ +
                  (4.7.3) 

For large values of 1M , the Eq. (4.7.3) can be approximated by the following 

relations;  

( )
2

2 2

1 1

2sin 2sin cos sin 21 ;
1 1 1

u v
V V

β β β β
γ γ γ

= − = =
+ + +

                        (4.7.4) 

The non-dimensional parameter pc  is defined as the pressure coefficient which is the 

ratio of static pressure difference across the shock to the dynamic pressure ( )1q .  

2 1

1
p

p pc
q
−

=                                                      (4.7.5) 

The dynamic pressure can also be expressed in the form of Mach number as given 

below; 

( )

2
2 2 21 1 1

1 1 1 1 1 1
1 1 1

1 1
2 2 2 2

p p Vq V V p M
p a
γ γ γρ

γ ρ
 

= = = = 
 

                   (4.7.6) 

Now, Eq. (4.7.5) can be simplified as, 

22
2 2

1 1 1

2 4 11 sin
1p

pc
M p M

β
γ γ

   
= − = −   +   

                             (4.7.7) 
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In the hypersonic limit of 1 ,M →∞ , Eq. (4.7.7) is approximated as below; 

24 sin
1pc β

γ
 

=  + 
                                                  (4.7.8) 

The relationship between Mach number ( )M , shock angle ( )β and deflection angle 

( )θ is expressed by Mθ β− − equation.  

( )
2 2

1
2

1

sin 1tan 2cot
cos 2 2

M
M

βθ β
γ β

 −
=  + + 

                                     (4.7.9) 

In the hypersonic limit, when, θ  is small, β  is also small. Thus, the small angle 

approximation can be used for Eq. (4.7.9).  

sin ; cos 2 1; tan sinβ β β θ θ θ≈ ≈ ≈ ≈                                (4.7.10) 

It leads to simplification of Eq. (4.7.9) as below; 

( )
2 2

1
2

1

12
1 2

M
M

βθ
β γ
 −

=  + + 
                                          (4.7. 11) 

In the high Mach number limit, Eq (4.7.11) may be approximated for 1.4γ = . 

( )
2 2

1
2

1

2 2 1; and 1.2
1 1 2

M
M

β β β γθ β θ
β γ γ θ
  +

= = = = + + 
               (4.7. 12) 

It is interesting to observe that in the hypersonic limit of a slender wedge, the shock 

wave angle is only 20% larger than the wedge angle which is the typical physical 

features of thin shock layer in the hypersonic flow.  
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Hypersonic expansion wave relations  

Consider the flow through an expansion corner as shown in Fig. 4.7.1(b). The 

expansion fan consists of infinite number of Mach waves originating at the corner and 

spreading downstream. The notations have their usual meaning and upstream and 

downstream conditions are denoted by subscripts ‘1’ and ‘2’, respectively. Let us 

revisit the exact relations for a Prandtl-Meyer expansion. The relation for deflection 

angle 1 2, andM Mθ  is expressed through Prandtl-Meyer function ( ){ }Mν .  

( ) ( ) ( ) ( )1 2 1 2
2 1

1 1tan 1 tan 1;
1 1

M M M M Mγ γν θ ν ν
γ γ

− − + −
= − − − = − − + 

(4.7. 13) 

For large Mach numbers, 2
1 1M M− ≈ and series expansion can be approximated for 

the trigonometric functions.  

( )

2 2 1 1

1 1 1 1
1 2 1 2

1 1 1 1 1 1and
1 1

M
M M

M M M M

γ π γ πν
γ γ

γ γθ
γ γ

   + +   = − − +      − −     
      + +

= − − +      − −      

                       (4.7. 14) 

Further, simplification of Eq (4.7.14) can be done and the final expression for θ  may 

be written as below;  

1 2

2 1 1
1 M M

θ
γ

 
= − −  

                                               (4.7. 15) 

Hypersonic Similarity Parameter  

In the study of hypersonic flow over slender bodies, the product of 1M θ  is a 

controlling parameter which is known as the similarity parameter denoted by K . All 

the hypersonic shock and expansion relations can be expressed in terms of this 

parameter. Introducing this parameter, Eq. (4.7.11) is rewritten in the limit of high 

values of Mach number;  

 ( )2
12 2 2 2 2

1 1 1

1 11 1 1
2 2

M
M M M

γ γβ β θ β β θ
 + + − = + ⇒ − =   

  
               (4.7.16) 
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Rearranging Eq. (4.7.16), one may obtain a quadratic equation in terms of ( )β θ , 

which may be easily solved.  

2 2

2 2 2 2
1 1

1 1 1 1 10
2 4 4M M

β γ β β γ γ
θ θ θ θ θ

+ + +     − − = ⇒ = + +     
     

       (4.7. 17) 

Within the framework of hypersonic assumption, the hypersonic shock relation for 

pressure ratio (Eq. (4.7.1), may be reduced in terms of K  by using Eq. (4.7.17).  

( ) 2
2 22

2
1

1 1 11
4 4

p K K
p K

γ γ γγ
+ + = + + + 

 
                        (4.7.18) 

Similarly, the pressure coefficient may also be expressed as a function of similarity 

parameter.  

( )
2

2
2 2

1 1 12 ,
4 4

p
p

c
c f K

K
γ γθ γ

θ

 + +  = + + ⇒ =    
                (4.7.19) 

The similarity relations for Prandtl-Meyer expansion wave may also be written in 

terms of the similarity parameter. The flow through an expansion fan is isentropic. 

Hence, the isentropic relations for pressure can be used for the conditions on both 

sides of expansion fan. When approximated to hypersonic flows, the static pressure 

relation across the expansion fan can be written as below; 

1
2 2

1 1
2 2 1

21 1 2
2

11
2

11
2

M
p p M
p p MM

γ
γ

γ
γ

γ

γ

−

−

 −  +       = ⇒ =  −    +     

                         (4.7.20) 

Rearranging Eq. (4.7.15), the ratio of Mach numbers across the expansion wave can 

be obtained.  

1
1

2

11
2

M M
M

γ θ− = −  
 

                                               (4.7. 21) 

Combine Eqs. (4.7.20 & 4.7.21) to obtain pressure ratio across the expansion fan in 

terms of similarity parameter.  
2

1
2

1

11
2

p K
p

γ
γγ −− = − 

 
                                                (4.7.22) 
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Further, the pressure coefficient across the expansion fan, may be expressed as a 

function of similarity parameter.  
2

1
2

2 2
1 1 1

2 2 11 1 1
2p

pc K
M p M

γ
γγ

γ γ
−

   −  = − = − −        

                             (4.7.23) 

Multiply and divide the right-hand side by 2θ
 
and simplify to obtain the following 

relation.  

( )
2

2 1

2 2

2 11 1 ,
2

p
p

c
c K g K

K

γ
γθ γ γ

γ θ
−

 −  = − − ⇒ =   
 

                      (4.7.24) 

It may be seen that pressure coefficient for hypersonic shock and expansion wave, are 

related through the similarity parameter in the limit of hypersonic Mach numbers. 

Hence, the Eqs (4.7.19 & 4.7.24) are analogous.  
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Module 4 : Lecture 8 
COMPRESSIBLE FLOWS 

(Hypersonic Flow: Part - III) 
 

Newtonian Theory for Hypersonic Flows 

The hypersonic flows are highly nonlinear due to many physical phenomena leading 

to complexity in the mathematical formulation and its solution. One can get rid of the 

complex nature of aerodynamic theories with the simple approximation of inviscid 

flow to obtain the linear relationship. It is interesting to note that the invicid 

compressible flow theory for high Mach number flows, resemble the fundamental 

Newtonian law of classical mechanics.  

When a fluid as a stream of particles in rectilinear motion, strikes a plate, it loses 

all its momentum normal to the surface and moves tangentially to the surface without 

the loss of tangential momentum. This is known as the Newtonian impact theory as 

shown in Fig. 4.8.1(a). Let a fluid stream of density ρ∞  strikes a surface of area A , 

with a velocity V∞ . This surface is inclined at an angle θ
 
with the free stream. By 

Newton’s law, the time rate of change of momentum of this mass flux is equal to the 

force ( )F exerted on the surface.   

( )( )( ) 2 2 2 2sin sin sin sinFF A V V V A V
A

ρ θ θ ρ θ ρ θ∞ ∞ ∞ ∞ ∞ ∞ ∞= = ⇒ =        (4.8.1) 

 

Fig. 4.8.1: Newtonian impact theory and hypersonic flow over a wedge: (a) schematic representation of a jet striking a 
plate; (b) streamlines in a thin shock layer.  
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Since the motion is rectilinear and the individual particles do not interact with each 

other, the force per unit area, associated with the random motion may be interpreted 

as the difference in surface pressure ( )p and the free stream pressure ( )p∞ . So, the 

Eq. (4.8.1) may be simplified in terms of pressure coefficient ( )pc .  

( )
2

2 2sin
1 2p

p pc
V

θ
ρ

∞

∞ ∞

−
= =                                            (4.8.2) 

 Now, let us analyze the hypersonic flow over a wedge with inclination angle 

θ  as shown in Fig. 4.8.1(b). Both the upstream and downstream side of the shock 

wave, the streamlines are straight and parallel. But, the stream lines are deflected by 

an angle θ  in the downstream. Since, the difference in the shock wave angle ( )β
 
and 

the flow deflection is very small at hypersonic speeds, it may be visualized as the 

upstream incoming flow impinging on the wedge surface and then running parallel to 

the wedge surface in the downstream.  This phenomenon is analogous to Newtonian 

theory and Eq. (4.8.2) may be used for hypersonic flow as well to predict the surface 

pressures. It is known as the Newtonian Sine-Squared Law for hypersonic flow.  

Inviscid Hypersonic Flow over a Flat Plate 

Consider a two-dimensional flat plate of certain length ( )l , inclined at angle ( )θ with 

respect to free stream hypersonic flow (Fig. 4.8.2). Now, the Newtonian theory can be 

applied at the lower and upper surface of the plate to obtain the pressure coefficient

( )pc .   

22sin ; 0pl puc cθ= =                                                 (4.8.3) 

 

Fig. 4.8.2: Illustration of aerodynamic forces for a flat plate in hypersonic flow. 
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The difference in pressures in the upper and lower surface of the plate, gives rise to a 

normal force ( )N . The normal force coefficient ( )nc can also be readily defined 

through the following formula.  

( )
0

1 l

n pl pu
Nc c c dx

l q S∞

= − =∫                                            (4.8.4) 

Here, 21
2

q Vρ∞ ∞ ∞
 = 
 

is the free stream dynamic pressure, ( )S l= is the frontal area 

per unit width and x  is the distance along the length of the plate from the leading 

edge. Now, substitute Eq. (4.8.3) in Eq. (4.8.4) to obtain the simplified relations; 

 ( )2 21 2sin 2sinnc l
l

θ θ= =                                               (4.8.5) 

If andL D  are defined as the lift and drag as shown in Fig. 4.8.2, then the other 

aerodynamic parameters such as lift coefficient ( )lc and drag coefficient ( )dc  can be 

expressed in the following fashion.  

2 3cos 2sin cos ; cos 2sinl n d d
L Dc c c c

q S q S
θ θ θ θ θ

∞ ∞

= = = = = =         (4.8.6) 

Referring to geometry of Fig. 4.8.2, the other important parameter lift-to-drag is 

obtained through the following relation; 

 cotL
D

θ=                                                         (4.8.7) 
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The results of Newtonian theory for the inviscid flow over a flat plate are plotted in 

Fig. 4.8.3 and the following important observations can be made; 

- The value of lift-to-drag ratio increases monotonically when the inclination 

angle decreases. It is mainly due to the fact that the Newtonian theory does not 

account for skin friction drag in the calculation. When skin friction is added, 

the drag becomes a finite value at 00 inclination angle and the ratio approaches 

zero.  

- The lift curve reaches its peak value approximately at an angle of 550. It is 

quite realistic, because most of the practical hypersonic vehicles get their 

maximum lift in this vicinity of angle of attack.  

- The lift curve at lower angle (0-150) shows the non-linear behavior. It is 

clearly the important characteristics feature of the hypersonic flows.  

 

Fig. 4.8.3: Aerodynamic parameters for a flat plate inclined at an angle.  
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Mach number Independence Principle 

Precisely, this principle states that certain aerodynamic quantities, such as pressure 

coefficient, lift and wave drag coefficients and flow-field structure (shock wave 

shapes and Mach wave patterns), become relatively independent on Mach number 

when its value is made sufficiently large. Let us justify this principle based on the 

following analysis; 

Oblique Shock Relations: Let us revisit the following oblique shock relations when 

approximated for hypersonic Mach numbers;  

 
( )

2
2 2

1 1

2

2sin 2sin cos sin 21 ;
1 1 1

4 1sin ;
1 2p

u v
V V

c

β β β β
γ γ γ

β γβ
γ θ

= − = =
+ + +

  +
= = + 

                        (4.8.8) 

It may be observed here that the oblique shock relations turn down to simplified form 

in the regime of hypersonic Mach numbers. Eq. (4.8.8) does not bear the Mach 

number term and thus the flow field is also independent of Mach number. This is 

called as Mach number independence principle and valid for very high Mach number 

inviscid flows.   

Newtonian Theory: The interesting feature of hypersonic flows, is the fact that certain 

aerodynamic parameters calculated from Newtonian theory, do not explicitly depend 

on the Mach number. Of course, these equations implicitly assume that the Mach 

numbers are high enough for hypersonic flows to prevail but its precise value do not 

enter into the calculations. In fact, the pressure and force coefficients expressed in Eqs 

(4.8.2- 4.8.7) do not contain the Mach number term. When extended to cylinder and 

sphere, the Newtonian theory predicts the drag coefficient of values as 1.33 and 1, 

respectively, irrespective of Mach number. This particular feature of hypersonic flow 

is known as Mach number independence and the Newtonian results are the 

consequence of this principle.  
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Modified Newtonian Theory 

In order to predict the pressure distributions ( )pc over blunt shaped aerodynamic 

bodies, the Newtonian theory (Eq. 4.8.2) is modified by the following expression.  

( )
2 02 02

max max 2 2

2sin ; 1
1 2p p p
p p pc c c

V M p
θ

ρ γ
∞

∞ ∞ ∞ ∞

 −
= = = − 

 
                    (4.8.9) 

Here, maxpc  is the maximum value of pressure coefficient, evaluated at stagnation 

point behind the normal shock, , ,p Mρ∞ ∞ ∞ are the free stream values of static 

pressure, static density, Mach number, respectively and 02p  is the stagnation pressure 

behind the normal shock. From the normal shock relations, it is possible to obtain the 

pressure ratio appearing in Eq. (4.8.9) for calculation of maxpc . 

( )
( )

( )2 22 1
02

2

1 1 21
4 2 1 1

MMp
p M

γ
γ γγ

γ γ γ

−
∞∞

∞ ∞

   − −+
 =  

− − +     
                        (4.8.10) 

Substitute Eq. (4.8.10) in Eq. (4.8.9) to obtain maxpc . 

( )
( )

( )2 22 1

max 2 2

1 1 212 1
4 2 1 1p

MM
c

M M

γ
γ γγ

γ γ γ γ

−
∞∞

∞ ∞

    − −+  = −  − − +       

                   (4.8.11) 
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The relation of maxpc  as  a function of free stream Mach number and specific heat 

ration for the gas is plotted in Fig. 4.8.4.  

 

Fig. 4.8.4: Variation of stagnation pressure coefficient as a function of free stream Mach number and specific heat ratio.  

 

In the limit of M∞ →∞ , maxpc  can be obtained as below; 

( )

( )
( )

2 1

max

1 4
4 1

1.839 1.4

2 1

pc

γ
γγ

γ γ

γ

γ

− +  
→    +   
→ =

→ =

                                           (4.8.12) 
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The Eq. (4.8.9) with the maxpc  given by the expression in Eq. (4.8.12) is called as the 

modified Newtonian law. The following important observation may be made.  

- The modified Newtonian law does not follow the Mach number independence 

principle. 

- When both and 1M γ∞ →∞ → , the straight Newtonian law is recovered 

from modified theory.  

- The modified Newtonian theory is a very important tool to estimate the 

pressure coefficients in the stagnation regions in the hypersonic flow fields of 

the blunt bodies.  

  


