## **BLOCK DIAGRAMS**

In the introductory section we saw examples of block diagrams to represent systems, e.g.:



- Block diagrams consist of
  - Blocks these represent subsystems typically modeled by, and labeled with, a transfer function
  - Signals inputs and outputs of blocks signal direction indicated by arrows could be voltage, velocity, force, etc.
  - Summing junctions points were signals are algebraically summed subtraction indicated by a negative sign near where the signal joins the summing junction

The basic input/output relationship for a single block is:



$$Y(s) = U(s) \cdot G(s)$$

- Block diagram blocks can be connected in three basic forms:
  - □ Cascade
  - □ Parallel
  - □ Feedback
- We'll next look at each of these forms and derive a singleblock equivalent for each

Blocks connected in cascade:



The equivalent transfer function of cascaded blocks is the product of the individual transfer functions



Blocks connected in parallel:



$$X_1(s) = U(s) \cdot G_1(s)$$

$$X_2(s) = U(s) \cdot G_2(s)$$

$$X_3(s) = U(s) \cdot G_3(s)$$

$$Y(s) = X_1(s) \pm X_2(s) \pm X_3(s)$$

$$Y(s) = U(s) \cdot G_1(s) \pm U(s) \cdot G_2(s) \pm U(s) \cdot G_3(s)$$

$$Y(s) = U(s)[G_1(s) \pm G_2(s) \pm G_3(s)] = U(s) \cdot G_{eq}(s)$$

$$G_{eq}(s) = G_1(s) \pm G_2(s) \pm G_3(s)$$

The equivalent transfer function is the sum of the individual transfer functions:



Of obvious interest to us, is the feedback form:



 $\square$  The **closed-loop transfer function**, T(s), is

$$T(s) = \frac{Y(s)}{R(s)} = \frac{G(s)}{1 + G(s)H(s)}$$

Calculate the closed-loop transfer function



- $\Box$  D(s) and G(s) are in cascade
- $H_1(s)$  is in cascade with the feedback system consisting of D(s), G(s), and  $H_2(s)$

$$T(s) = H_1(s) \cdot \frac{D(s)G(s)}{1 + D(s)G(s)H_2(s)}$$

$$T(s) = \frac{H_1(s)D(s)G(s)}{1 + D(s)G(s)H_2(s)}$$

We're often interested in unity-feedback systems



- Feedback path gain is unity
  - Can always reconfigure a system to unity-feedback form
- Closed-loop transfer function is:

$$T(s) = \frac{D(s)G(s)}{1 + D(s)G(s)}$$

- Often want to simplify block diagrams into simpler, recognizable forms
  - To determine the equivalent transfer function
- Simplify to instances of the three standard forms,
  then simplify those forms
- Move blocks around relative to summing junctions
  and pickoff points simplify to a standard form
  - Move blocks forward/backward past summing junctions
  - Move blocks forward/backward past pickoff points

#### The following two block diagrams are equivalent:



$$Y(s) = [U_1(s) + U_2(s)]G(s) = U_1(s)G(s) + U_2(s)G(s)$$

#### The following two block diagrams are equivalent:



$$Y(s) = U_1(s)G(s) + U_2(s) = \left[U_1(s) + U_2(s)\frac{1}{G(s)}\right]G(s)$$

#### We can move blocks backward past pickoff points:



#### □ And, we can move them forward past pickoff points:



Rearrange the following into a unity-feedback system



- Move the feedback block, H(s), forward, past the summing junction
- Add an inverse block on R(s) to compensate for the move



Closed-loop transfer function:

$$T(s) = \frac{\frac{1}{H(s)}H(s)G(s)}{1 + G(s)H(s)} = \frac{G(s)}{1 + G(s)H(s)}$$

 Find the closed-loop transfer function of the following system through block-diagram simplification



### $\Box$ $G_1(s)$ and $H_1(s)$ are in feedback form



$$G_{eq}(s) = \frac{G_1(s)}{1 - G_1(s)H_1(s)}$$

 $\square$  Move  $G_2(s)$  backward past the pickoff point



Block from previous step,  $G_2(s)$ , and  $H_2(s)$  become a feedback system that can be simplified

- Simplify the feedback subsystem
- $\square$  Note that we've dropped the function of s notation, (s), for clarity



$$G_{eq}(s) = \frac{\frac{G_1 G_2}{1 - G_1 H_1}}{1 + \frac{G_1 G_2 H_2}{1 - G_1 H_1}} = \frac{G_1 G_2}{1 - G_1 H_1 + G_1 G_2 H_2}$$

#### Simplify the two parallel subsystems



$$G_{eq}(s) = G_3 + \frac{G_4}{G_2}$$

- Now left with two cascaded subsystems
  - Transfer functions multiply



$$G_{eq}(s) = \frac{G_1 G_2 G_3 + G_1 G_4}{1 - G_1 H_1 + G_1 G_2 H_2}$$



The equivalent, close-loop transfer function is

$$T(s) = \frac{G_1 G_2 G_3 + G_1 G_4}{1 - G_1 H_1 + G_1 G_2 H_2}$$

# Multiple-Input Systems

- Systems often have more than one input
  - $\blacksquare$  E.g., reference, R(s), and disturbance, W(s)



- Two transfer functions:
  - From reference to output

$$T(s) = Y(s)/R(s)$$

From disturbance to output

$$T_w(s) = Y(s)/W(s)$$

- $\square$  Find transfer function from R(s) to Y(s)
  - A linear system superposition applies
  - $\square$  Set W(s) = 0



$$T(s) = \frac{Y(s)}{R(s)} = \frac{D(s)G(s)}{1 + D(s)G(s)}$$

- $\square$  Next, find transfer function from W(s) to Y(s)
  - $\square$  Set R(s) = 0
  - System now becomes:



$$T_w(s) = \frac{Y(s)}{W(s)} = \frac{G_w(s)G(s)}{1 + D(s)G(s)}$$