BLOCK DIAGRAMS



In the introductory section we saw examples of block diagrams
to represent systems, e.g.:
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o Blocks - these represent subsystems — typically modeled by, and labeled
with, a transfer function

R(s)

Block diagrams consist of

o Signals - inputs and outputs of blocks - signal direction indicated by
arrows — could be voltage, velocity, force, etc.

o Summing junctions — points were signals are algebraically summed -
subtraction indicated by a negative sign near where the signal joins the
summing junction



The basic input/output relationship for a single block is:

U(s) Y(s)
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Y(s) =U(s)-G(s)

Block diagram blocks can be connected in three basic forms:
o Cascade

o Parallel

o Feedback

We'll next look at each of these forms and derive a single-
block equivalent for each



- Blocks connected in cascade:

U(s)

X1(s) = U(s) - G1(s), Xa(s) = X1(s) - G2(s)
Y(s) = Xy(s) - G3(s) = X1(8) - Go(s) - G3(5)
Y(s) = U(s) " Gy(s) - Go(s) - G3(s) = U(s) Gy ()
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Geq(s) = G1(5) - G(s) - G3(s)
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The equivalent transfer function of cascaded blocks is the

product of the individual transfer functions
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Blocks connected in parallel:

oy — X1(s) = U(s) - Gy4(s)
: X,(s) = U(s) - Gy(s)
Uls) Gils) Xils) ¢ /i\ Y}M
h X3(s) = U(s) - G3(s)
| o [ Y(s) = X;(s) £ X,(s) £ X5(5)

Y(s) = U(s) - Gy(s) £ U(s) - Gy(s) L U(s) - G3(s)
Y(s) = U(s)[Gy(s) £ Go(s) £ Ga(5)] = U(S) - Gey ()
Geq(s) = G1(s) £ Gy(s) £ G5(s)

The equivalent transfer function is the sum of the individual
transfer functions:

U(s) Y(s)
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Of obvious interest to us, is the feedback form:

L ¥ v = E©)6(s)
l Y(s) = [R(s) — X(s)]G(s)
AL Y(s) = [R(s) = Y(s)H(s)]G(s)
Y(s)[1+G(s)H(s)] = R(s)G(s)
~ G(s)
iy 14+ G(s)H(s)

The closed-loop transfer function, T (s), is

Y(s) - G(s)
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Calculate the closed-loop transfer function
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D(s) and G(s) are in cascade

1 H;(s) is in cascade with the feedback system consisting of D(s),
G(s), and H,(s)

B D(s)G(s)
I'(s) =H(5) "7 D(s)G(s)H,(s)
T(s) = e T

14+ D(s)G(s)H,(s)



We’'re often interested in unity-feedback systems

R(s) {T\ Dis) Gls) }Y(s)
Feedback path gain is unity
o Can always reconfigure a system to unity-feedback form

Closed-loop transfer function is:

D(s)G(s)
1+ D(s)G(s)

T(s5)=



Often want to simplify block diagrams into simpler,
recognizable forms
o To determine the equivalent transfer function

Simplify to instances of the three standard forms,
then simplify those forms

Move blocks around relative to summing junctions
and pickoff points — simplify to a standard form

o Move blocks forward/backward past summing junctions
o Move blocks forward/backward past pickoff points



The following two block diagrams are equivalent:
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Y(s) = [Us(s) + U2()]G(s) = U1 (s)G(s) + Up(s)G(s)



The following two block diagrams are equivalent:
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We can move blocks backward past pickoff points:
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And, we can move them forward past pickoff points:

U(s)-G(s)

U(s) | 69 9(5)-6(5)
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Rearrange the following into a unity-feedback system

R(s) | Y(s) Move the feedback block, H(s), forward,
(3) Gls) . .
= past the summing junction
Add an inverse block on R(s) to
kil compensate for the move
el = ) Hs) 6(s) o
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Closed-loop transfer function'

(s )H(s)G(s) G(s)
1+ G(s)H(s) 1+ G(s)H(s)

T5)=



- Find the closed-loop transfer function of the following
system through block-diagram simplification
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-~ G4(s) and H,(s) are in feedback form
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Move G, (s) backward past the pickoff point
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Block from previous step, G,(s), and H,(s) become a
feedback system that can be simplified



Simplify the feedback subsystem
Note that we’ve dropped the function of s notation, (s), for clarity
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Simplify the two parallel subsystems
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Now left with two cascaded subsystems

o Transfer functions multiply

R(s)

Y(s)

G4G, G3+G,
1-GiH1+ G1G3H; G;
G1G,G3 + G1Gy
Gegq (s) =

1— GyHy + GiGsHs
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1 The equivalent, close-loop transfer function is

G1G,G3 + GGy

Tls) =



Multiple-Input Systems



Systems often have more than one input
o E.g., reference, R(s), and disturbance, W (s)

Wi(s)
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Two transfer functions:
o From reference to output

T(s) =Y(s)/R(s)

o From disturbance to output

Ty(s) =Y(s)/W(s)



Find transfer function from R(s) to Y (s)

0 A linear system — superposition applies
oSetW(s) =0

R(s) 7N E(s) U(s) Y(s)
@ D(s) G(s) .
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T(s) =

Y(s)  D(s)G(s)
R(s) 1+ D(s)G(s)




Next, find transfer function from W (s) to Y (s)
nSetR(s) =0
o System now becomes:

w——%(s) Gu(s) «@; G(s) Z(S)
D(s)

Y(s)  Gw(s)G(s)
W(s) 1+ D(s)G(s)




