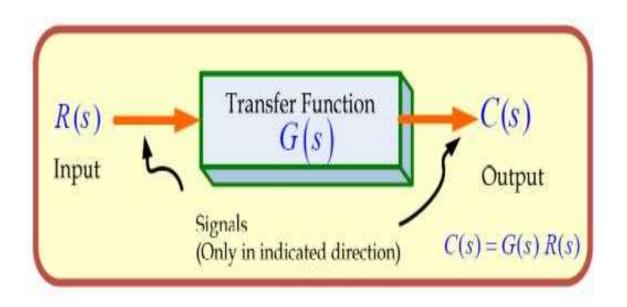
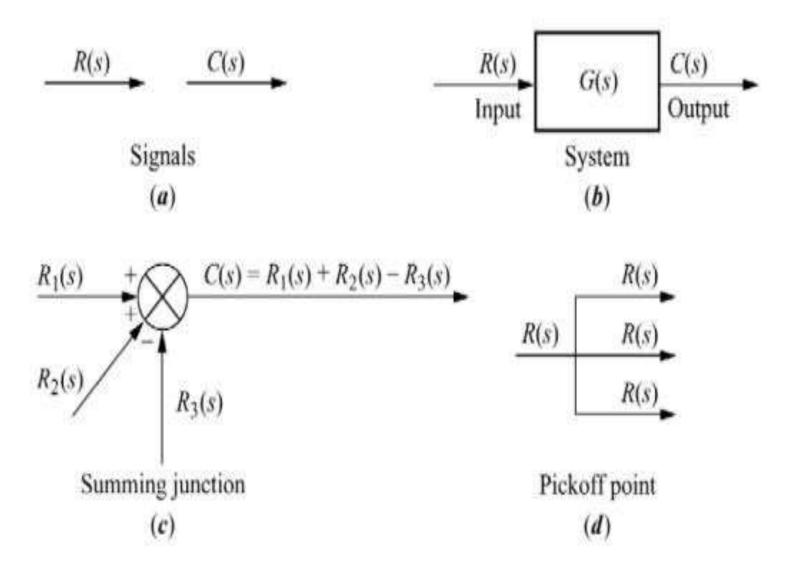
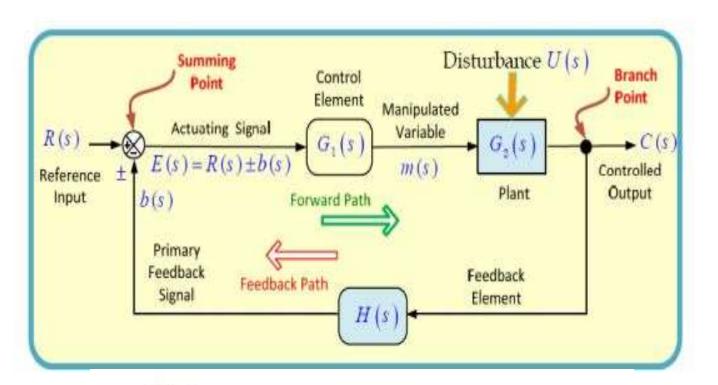
Derivation of transfer function using block diagrams reduction techniques

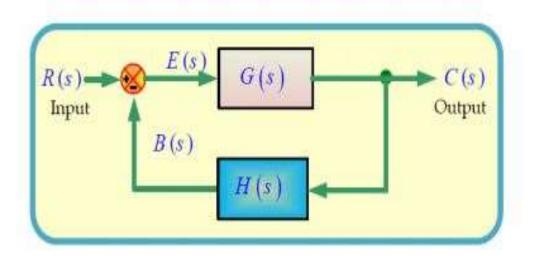
Transfer function of a system



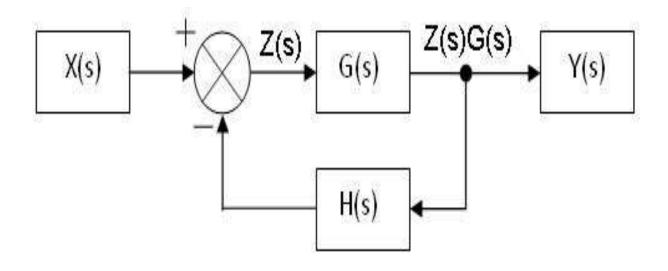




- G (s) = Direct transfer function = Forward transfer function.
- H (s) = Feedback transfer function.
- G(s)H(s) = Open-loop transfer function.
- C(s)/R(s) = Closed-loop transfer function = Control ratio
- C(s)/E(s) = Feed-forward transfer function.



$$\frac{C(s)}{R(s)} = \frac{G(s)}{1 + G(s)H(s)}$$



$$\frac{Y(s)}{X(s)} = \frac{G(s)}{1 + G(s)H(s)}$$

Using this figure we write:

$$Y(s) = G(s)Z(s)$$
$$Z(s) = X(s) - H(s)Y(s)$$

Now, plug the second equation into the first to eliminate Z(s):

$$Y(s) = G(s)[X(s) - H(s)Y(s)]$$

Move all the terms with Y(s) to the left hand side, and keep the term with X(s) on the right hand side:

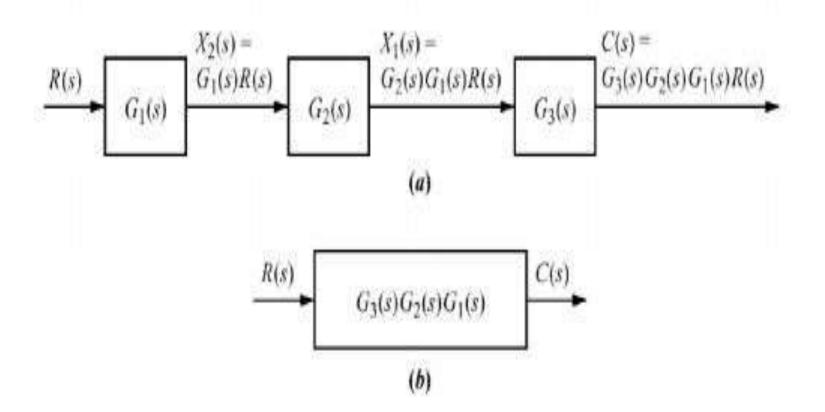
$$Y(s) + G(s)H(s)Y(s) = G(s)X(s)$$

Therefore,

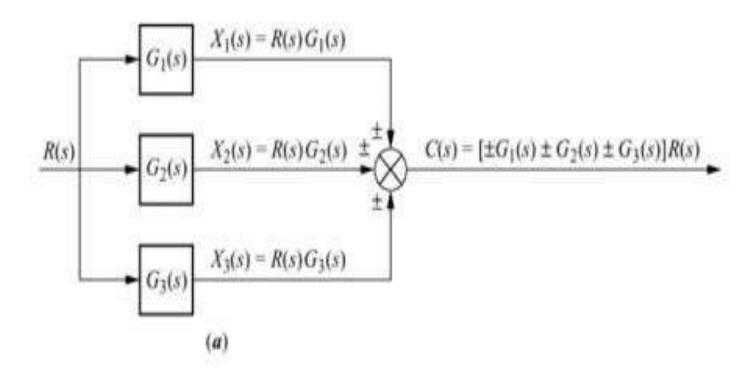
$$Y(s)(1+G(s)H(s))=G(s)X(s)$$

$$\Rightarrow \frac{Y(s)}{X(s)} = \frac{G(s)}{1 + G(s)H(s)}$$

Cascade (Series) Connections



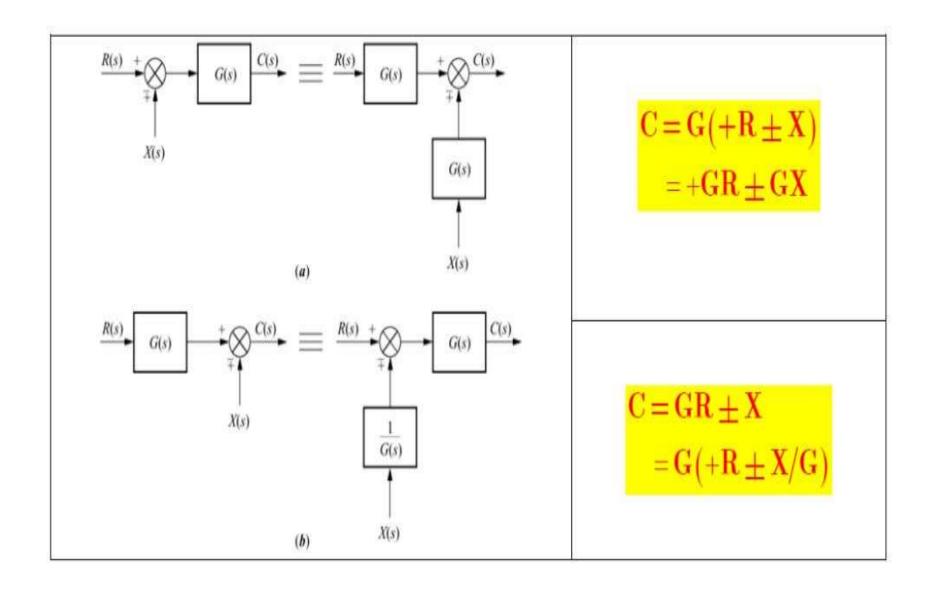
Parallel Connections



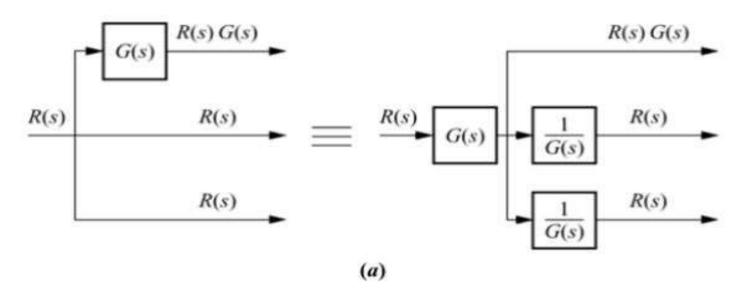
$$\pm G_1(s) \pm G_2(s) \pm G_3(s)$$

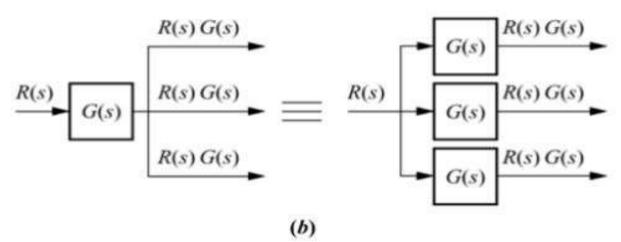
$$(b)$$

Block Diagram Algebra for Summing Junctions

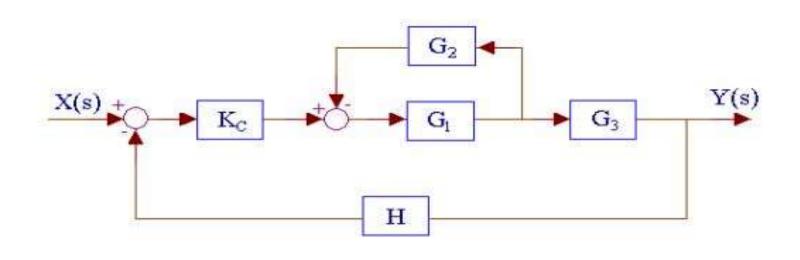


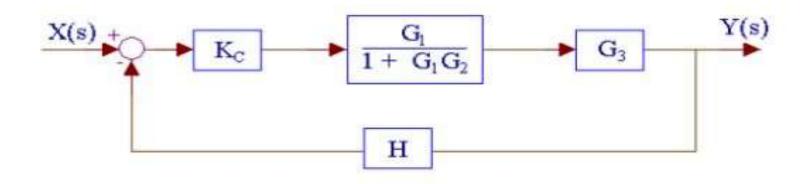
Block Diagram Algebra for Branch Point

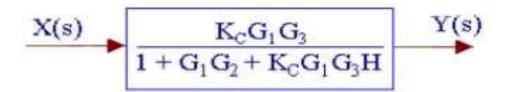


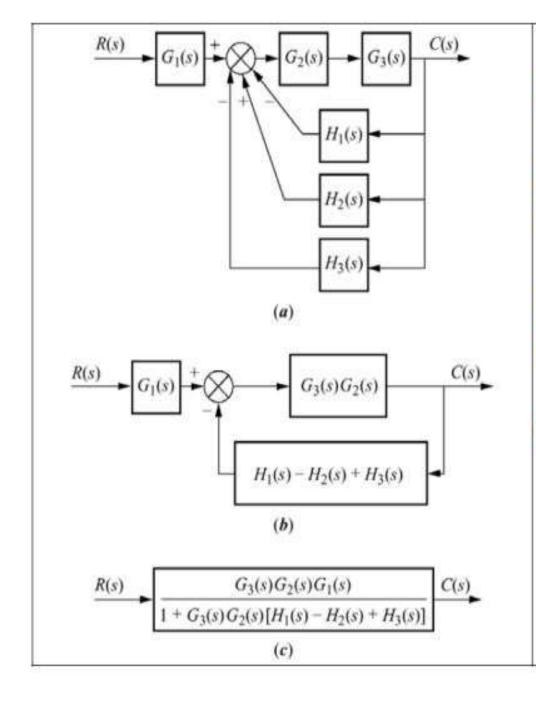


8—	Manipulation	Original Block Diagram	Equivalent Block Diagram	Equation
1	Combining Blocks in Cascade	$X \longrightarrow G_1 \longrightarrow G_2 \longrightarrow Y$	$X \longrightarrow G_1G_2 \longrightarrow Y$	$Y = (G_1 G_2) X$
2	Combining Blocks in Parallel; or Eliminating a Forward Loop	X G_1 X G_2 Y	$X \longrightarrow G_1 \pm G_2 \longrightarrow Y$	$Y = (G_1 \pm G_2)X$
3	Moving a pickoff point behind a block	$u \longrightarrow G \longrightarrow y$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$y = Gu$ $u = \frac{1}{G}y$
4	Moving a pickoff point ahead of a block		$ \begin{array}{cccc} u & & & & & & & & & & & & & & & & & & &$	y = Gu
5	Moving a summing point behind a block		$u_1 \longrightarrow G \longrightarrow y$ $u_2 \longrightarrow G$	$e_2 = G(u_1 - u_2)$
6	Moving a summing point ahead of a block		$u_1 \longrightarrow G \longrightarrow y$ $1/G \longrightarrow u_2$	$y = Gu_1 - u_2$
			$u = G_2 - 1/G_2 - G_1 - y$	$y = (G_1 - G_2)u$







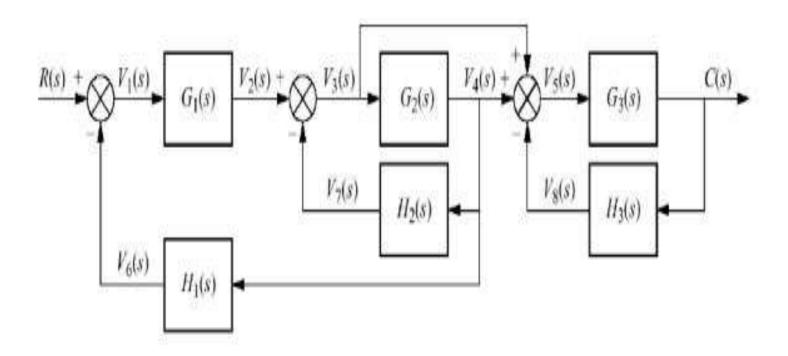


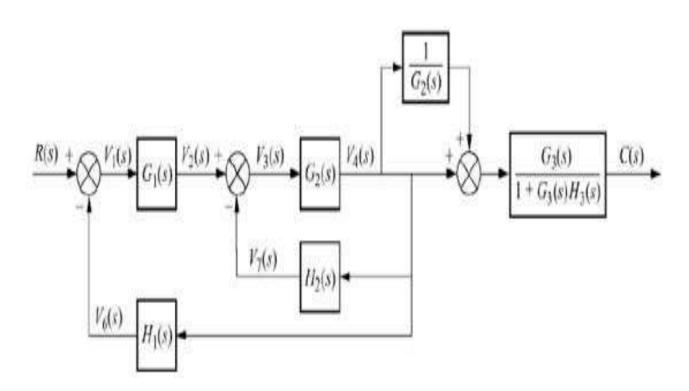
G₁ and G₂ are in series

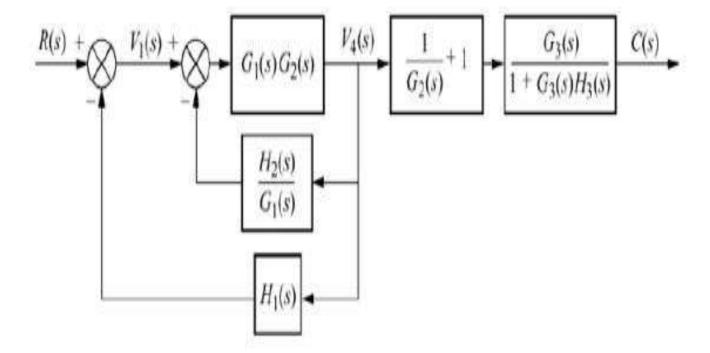
H₁ and H₂ and H₃ are in parallel

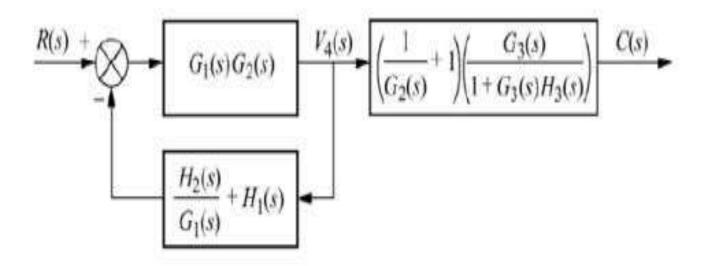
G₁ is in series with the feedback configuration.

$$\frac{C(s)}{R(s)} = G_1 \left[\frac{G_3 G_2}{1 + G_3 G_2 (H_1 - H_2 + H_3)} \right]$$









$$\begin{array}{c|c}
R(s) & \hline G_1(s)G_2(s) & V_4(s) \\
\hline
1 + G_2(s)H_2(s) + G_1(s)G_2(s)H_1(s) & \hline
\end{array}
\begin{array}{c|c}
V_4(s) & \hline
G_2(s) + I & G_3(s) \\
\hline
G_2(s) + I & G_3(s)H_3(s)
\end{array}$$

$$\frac{R(s)}{\left[1 + G_2(s)H_2(s) + G_1(s)G_2(s)H_1(s)\right]\left[1 + G_3(s)H_3(s)\right]} C(s)$$

. .