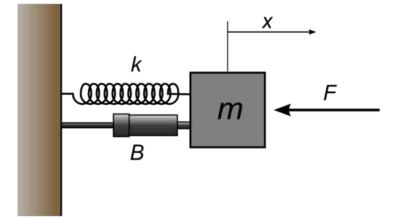
TRANSLATIONAL MECHANICAL SYSTEMS

Basic Types of Mechanical Systems

- Translational
 - Linear Motion



- Rotational
 - Rotational Motion

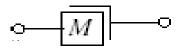
Basic Elements of Translational Mechanical Systems

Translational Spring

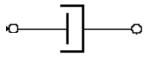
Translational Mass

ii)

i)



iii)

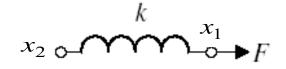


 A translational spring is a mechanical element that can be deformed by an external force such that the deformation is directly proportional to the force applied to it.

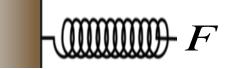
i)	Translational Spring	
	Circuit Symbols	

Translational Spring

• If **F** is the applied force



• Then x_1 is the deformation if $x_2 = 0$



• Or $(x_1 - x_2)$ is the deformation.

 $\longrightarrow F$

• The equation of motion is given as

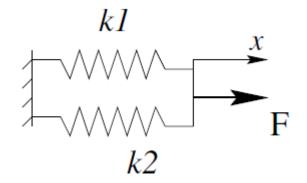
$$F = k(x_1 - x_2)$$

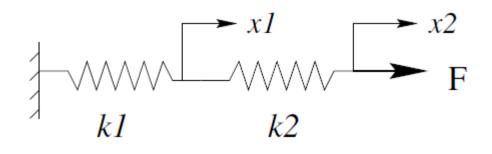
• Where k is stiffness of spring expressed in N/m

 Given two springs with spring constant k₁ and k₂, obtain the equivalent spring constant k_{eq} for the two springs connected in:

(1) Parallel

(2) Series





• The two springs have same displacement therefore:

$$k_{1}x + k_{2}x = F$$

$$(1) \text{ Parallel}$$

$$(k_{1} + k_{2})x = F$$

$$k_{eq}x = F$$

$$k_{eq}x = F$$

$$k_{eq} = k_{1} + k_{2}$$

$$(1) \text{ Parallel}$$

$$k_{l} = k_{l}$$

• If *n* springs are connected in parallel then:

$$k_{eq} = k_1 + k_2 + \dots + k_n$$

• The forces on two springs are same, *F*, however displacements are different therefore:

$$k_1 x_1 = k_2 x_2 = F$$

$$x_1 = \frac{F}{k_1}$$

$$x_2 = \frac{F}{k_2}$$
(2) Series
$$x_1 = \frac{x_1}{k_1}$$
(2) Series
$$x_1 = \frac{x_1}{k_2}$$
(2) Series
(2) Serie

• Since the total displacement is $x = x_1 + x_2$, and we have $F = k_{eq}x$

$$x = x_1 + x_2 \Longrightarrow \frac{F}{k_{eq}} = \frac{F}{k_1} + \frac{F}{k_2}$$

$$\frac{F}{k_{eq}} = \frac{F}{k_1} + \frac{F}{k_2}$$

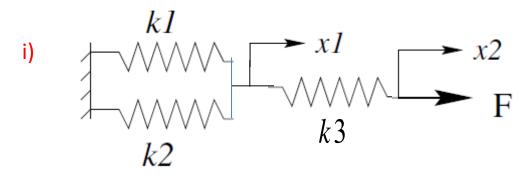
• Then we can obtain

$$k_{eq} = \frac{1}{\frac{1}{k_1} + \frac{1}{k_2}} = \frac{k_1 k_2}{k_1 + k_2}$$

• If *n* springs are connected in series then:

$$k_{eq} = \frac{k_1 k_2 \cdots k_n}{k_1 + k_2 + \cdots + k_n}$$

• Exercise: Obtain the equivalent stiffness for the following spring networks.



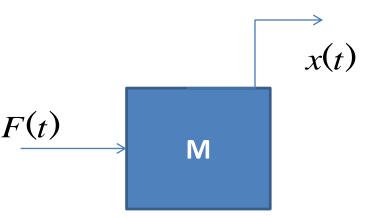


Translational Mass

ii)

- Translational Mass is an inertia element.
- A mechanical system without mass does not exist.
- If a force F is applied to a mass and it is displaced to x meters then the relation b/w force and displacements is given by Newton's law.

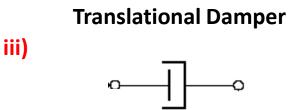




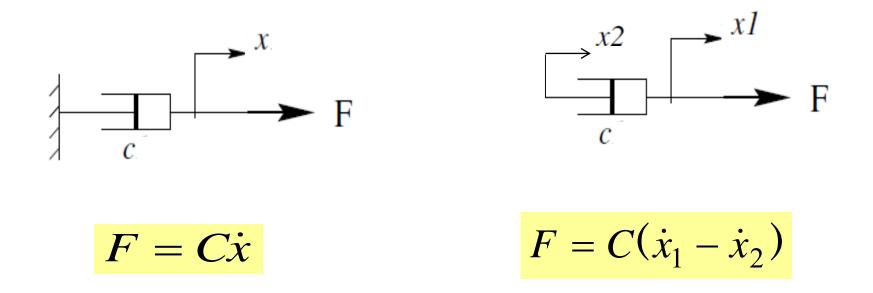
$$F = M\ddot{x}$$

Translational Damper

- When the viscosity or drag is not negligible in a system, we often model them with the damping force.
- All the materials exhibit the property of damping to some extent.
- If damping in the system is not enough then extra elements (e.g. Dashpot) are added to increase damping.



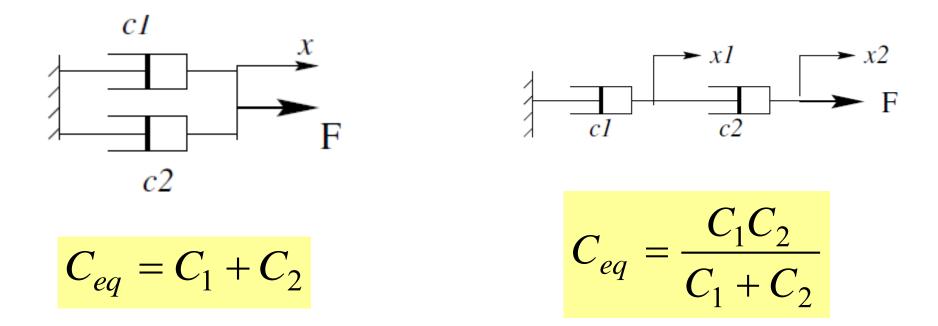
Translational Damper



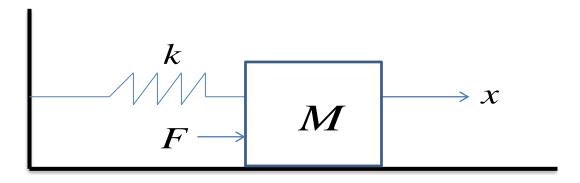
• Where *C* is damping coefficient (*N/ms*⁻¹).

Translational Damper

• Translational Dampers in series and parallel.

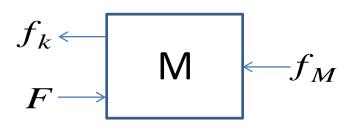


• Consider the following system (friction is negligible)



• Free Body Diagram

• Where f_k and f_M are force applied by the spring and inertial force respectively.



$$F = f_k + f_M$$

• Then the differential equation of the system is:

$$F = M\ddot{x} + kx$$

 Taking the Laplace Transform of both sides and ignoring initial conditions we get

$$F(s) = Ms^2 X(s) + kX(s)$$

$$F(s) = Ms^2 X(s) + kX(s)$$

• The transfer function of the system is

$$\frac{X(s)}{F(s)} = \frac{1}{Ms^2 + k}$$

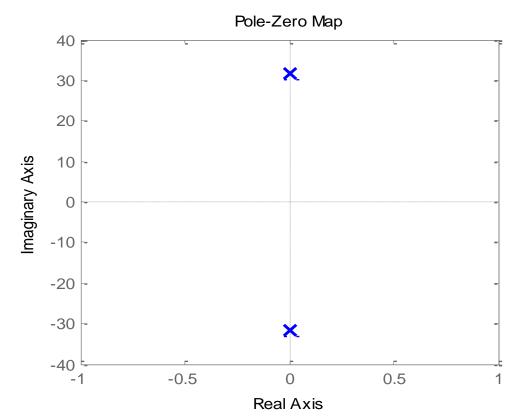
• if

 $M = 1000 \, kg$ $k = 2000 \, Nm^{-1}$

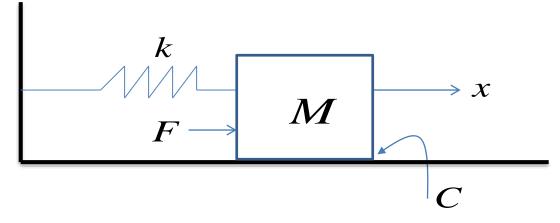
$$\frac{X(s)}{F(s)} = \frac{0.001}{s^2 + 2}$$

$$\frac{X(s)}{F(s)} = \frac{0.001}{s^2 + 2}$$

• The pole-zero map of the system is



• Consider the following system



• Free Body Diagram

 $F = f_k + f_M + f_C$

Differential equation of the system is:

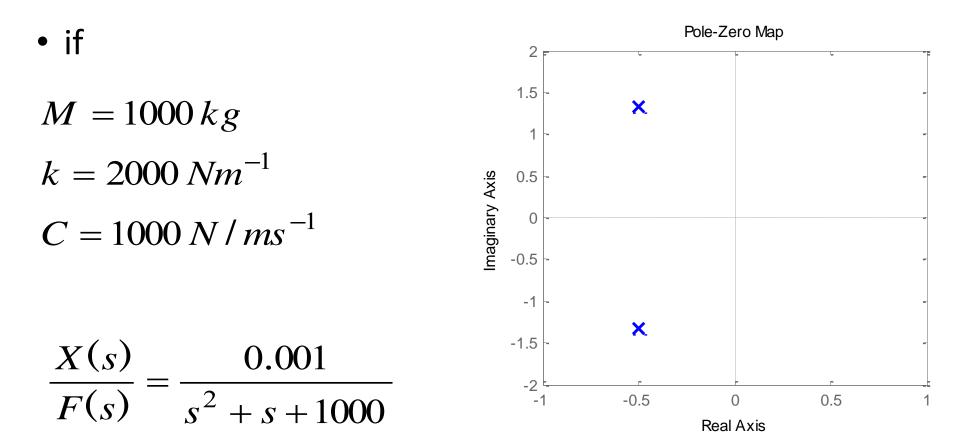
$$F = M\ddot{x} + C\dot{x} + kx$$

Taking the Laplace Transform of both sides and ignoring Initial conditions we get

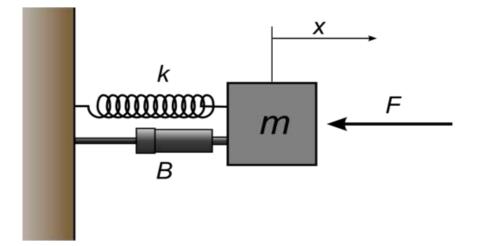
$$F(s) = Ms^2X(s) + CsX(s) + kX(s)$$

$$\frac{X(s)}{F(s)} = \frac{1}{Ms^2 + Cs + k}$$

$$\frac{X(s)}{F(s)} = \frac{1}{Ms^2 + Cs + k}$$



• Consider the following system



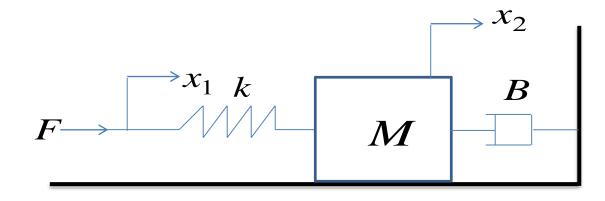
• Free Body Diagram (same as example-2)

$$f_{k} \leftarrow f_{B}$$

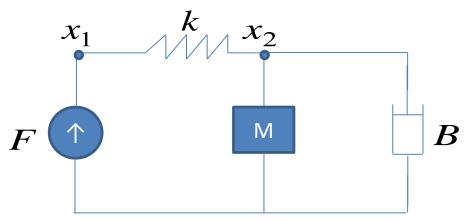
$$F \rightarrow f_{M} \qquad \qquad \frac{X(s)}{F(s)} = \frac{1}{Ms^{2} + Bs + k}$$

$$F = f_{k} + f_{M} + f_{B}$$

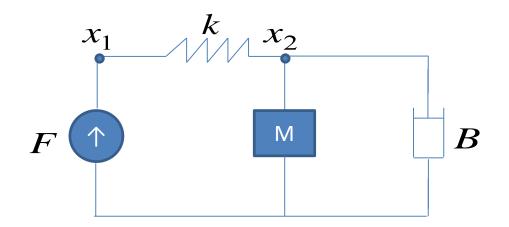
• Consider the following system



• Mechanical Network



• Mechanical Network

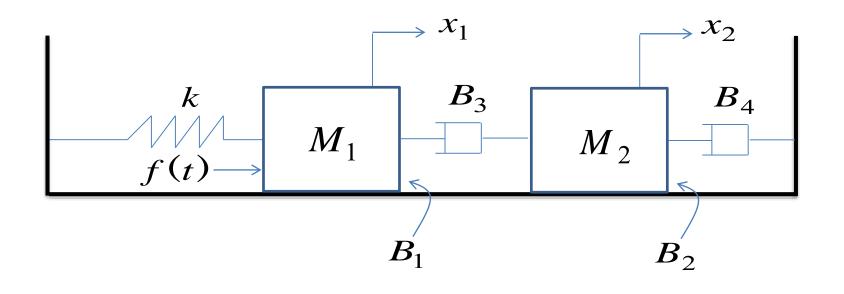


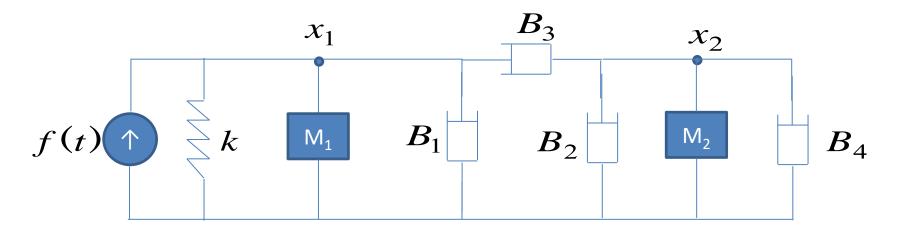
<u>At node</u> X_1

$$F = k(x_1 - x_2)$$

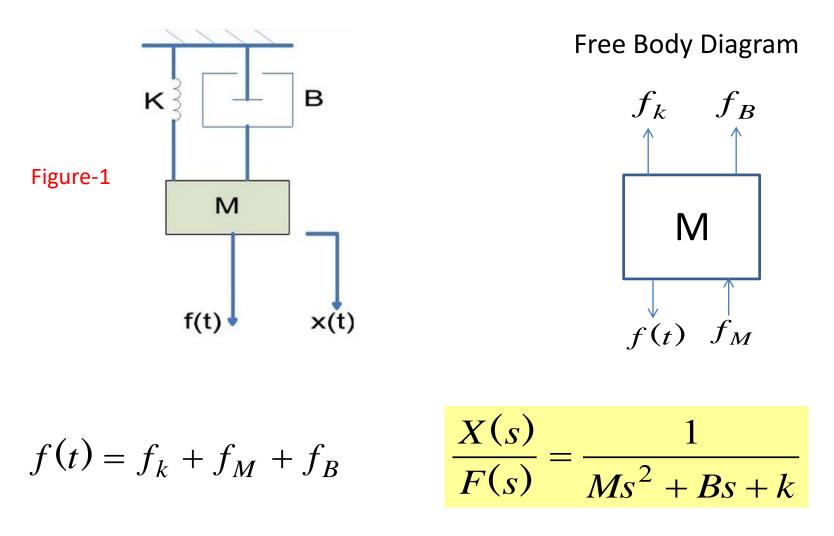
<u>At node</u> X_2

$$0 = k(x_2 - x_1) + M\ddot{x}_2 + B\dot{x}_2$$

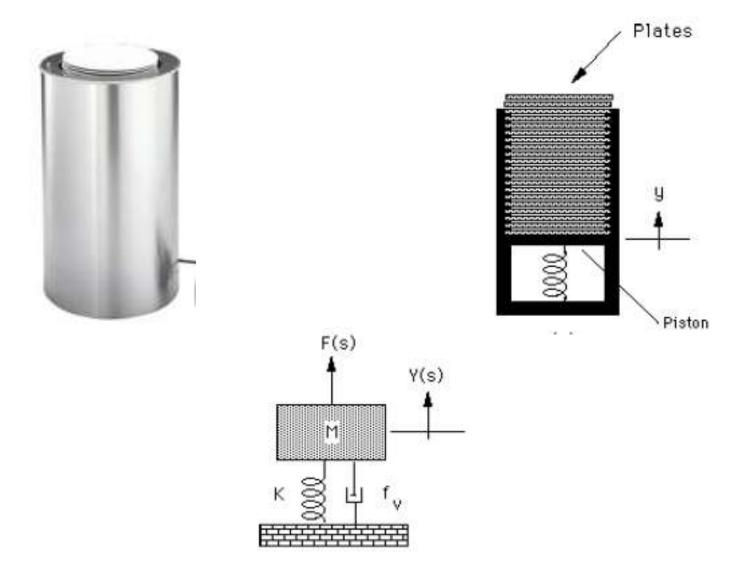




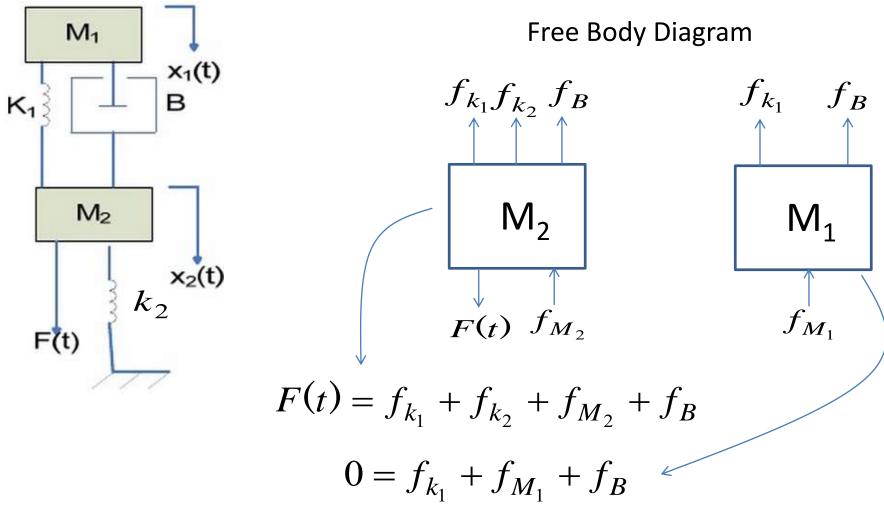
• Find the transfer function of the mechanical translational system given in Figure-1.

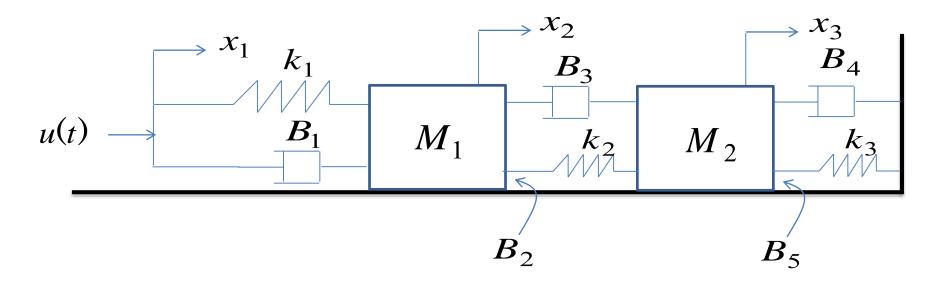


• Restaurant plate dispenser



• Find the transfer function $X_2(s)/F(s)$ of the following system.





ROTATIONAL MECHANICAL SYSTEMS

Basic Elements of Rotational Mechanical Systems

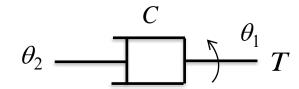
Rotational Spring

$$\theta_2 \circ T$$

$$T = k(\theta_1 - \theta_2)$$

Basic Elements of Rotational Mechanical Systems

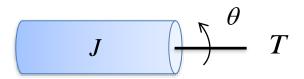
Rotational Damper



$$T = C(\dot{\theta}_1 - \dot{\theta}_2)$$

Basic Elements of Rotational Mechanical Systems

Moment of Inertia



 $T = J \ddot{\theta}$

