
TRANSLATIONAL MECHANICAL SYSTEMS
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Basic Types of Mechanical Systems

• Translational

– Linear Motion

• Rotational

– Rotational Motion
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Basic Elements of Translational Mechanical Systems

Translational Spring

i)

Translational Mass

ii)

Translational Damper

iii)



Translational Spring

i)

Circuit Symbols

Translational Spring
• A translational spring is a mechanical element that

can be deformed by an external force such that the
deformation is directly proportional to the force
applied to it.

Translational Spring



Translational Spring
• If F is the applied force

• Then is the deformation if

• Or is the deformation.

• The equation of motion is given as

• Where is stiffness of spring expressed in N/m
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Translational Spring

• Given two springs with spring constant k1 and k2, obtain
the equivalent spring constant keq for the two springs
connected in:
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(1) Parallel (2) Series



Translational Spring
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(1) Parallel

Fxkxk  21

Fxkk  )( 21

Fxkeq 

• The two springs have same displacement therefore:

21 kkkeq 

• If n springs are connected in parallel then:
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Translational Spring
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(2) Series
Fxkxk  2211

• The forces on two springs are same, F, however
displacements are different therefore:
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• Since the total displacement is , and we have21 xxx  xkF eq
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Translational Spring
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• Then we can obtain
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• If n springs are connected in series then:
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Translational Spring
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• Exercise: Obtain the equivalent stiffness for the following
spring networks.
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Translational Mass

Translational Mass

ii)

• Translational Mass is an inertia
element.

• A mechanical system without
mass does not exist.

• If a force F is applied to a mass
and it is displaced to x meters
then the relation b/w force and
displacements is given by
Newton’s law.
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Translational Damper

Translational Damper

iii)

• When the viscosity or drag is not
negligible in a system, we often
model them with the damping
force.

• All the materials exhibit the
property of damping to some
extent.

• If damping in the system is not
enough then extra elements (e.g.
Dashpot) are added to increase
damping.



Translational Damper

xCF 

• Where C is damping coefficient (N/ms-1).

)( 21 xxCF  



Translational Damper

• Translational Dampers in series and parallel.
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Example-1

• Consider the following system (friction is negligible)
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• Free Body Diagram
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• Where       and       are force applied by the spring and  
inertial force respectively. 
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Example-1
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• Then the differential equation of the system is:

kxxMF  

• Taking the Laplace Transform of both sides and ignoring 
initial conditions we get
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)()()( skXsXMssF  2

• The transfer function of the system is
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• The pole-zero map of the system is
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Example-2

• Consider the following system
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• Free Body Diagram
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Example-2
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Differential equation of the system is:

kxxCxMF  

Taking the Laplace Transform of both sides and ignoring 
Initial conditions we get

)()()()( skXsCsXsXMssF  2

kCsMssF

sX




2

1

)(

)(



Example-2
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Example-3

• Consider the following system
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• Free Body Diagram (same as example-2)
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Example-4

• Consider the following system
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• Mechanical Network
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Example-4
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• Mechanical Network

↑ M

k

BF

1x 2x

)( 21 xxkF 

At node 1x

At node 2x
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Example-5
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Example-6

• Find the transfer function of the mechanical translational
system given in Figure-1.
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Free Body Diagram

Figure-1
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Example-7
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• Restaurant plate dispenser



Example-8
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• Find the transfer function X2(s)/F(s) of the following system.

Free Body Diagram
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Example-09
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ROTATIONAL MECHANICAL SYSTEMS
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Basic Elements of Rotational Mechanical Systems

Rotational Spring
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Basic Elements of Rotational Mechanical Systems

Rotational Damper

2
1

)( 21    CT

T

C



Basic Elements of Rotational Mechanical Systems

Moment of Inertia
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Example-1
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Example-2
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Example-3

1
T

1J

1k

2B 2J

2
2k



Example-4


