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It states that the  force F between two point charges Q1 and Q2 is

Coulomb’s  Law

In Vector form

Or

If we have more than two point charges
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Electric Field Intensity is the force per unit charge when placed in the 

electric field

Electric Field Intensity

In Vector form

If we have more than two point charges

E



If there is a continuous charge distribution say along a line, on a 
surface, or in a volume

Electric Field due to Continuous Charge 
Distribution

The charge element dQ and the total charge Q due to these charge 
distributions can be obtained by



The electric field intensity due to each charge distribution ρL, ρS and 
ρV may be given by the summation of the field contributed by the 
numerous point charges making up the charge distribution.



The electric field intensity depends on the medium in which the 
charges are placed.

Electric Flux Density

The electric flux ψ in terms of D can be defined as

Suppose a vector field D independent of the medium is defined by

ED oε=

The vector field D is called the electric flux density and is measured in 
coulombs per square meter.



Electric Flux Density

For an infinite sheet the electric field intensity D is given by

For a volume charge distribution the electric field intensity D is given 
by

In both the above equations D is a function of charge and position 
only (independent of medium)



Gauss Law

It states that the total electric flux ψ through any closed surface is 
equal to the total charge enclosed by that surface.

encQ=ψ

(i)



Using Divergence Theorem

(ii)

Comparing the two volume integrals in (i) and (ii)

This is the first Maxwell’s equation.

It states that the volume charge density is the same as the divergence 
of the electric flux density.



Electric Potential
Electric Field intensity, E due to a charge distribution can be obtained 
from Coulomb’s Law. 

or using Gauss Law when the charge distribution is symmetric.

We can obtain E without involving vectors by using the electric scalar 
potential V.

From Coulomb’s Law the force on point 
charge Q is

EQF =
The work done in displacing the charge 
by length dl is

dlFdW .−= dlEQ .−=
The negative sign indicates that the work is being done by an external agent.



The total work done or the potential energy required in moving the 
point charge Q from A to B is

dlEQW
B
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Dividing the above equation by Q gives the potential energy per unit 
charge.
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ABV is known as the potential difference between points A and B.

1. If        is negative, there is loss in potential energy in moving Q 
from A to B (work is being done by the field), if        is positive, there 
is a gain in potential energy in the movement (an external agent does 
the work).

ABV
ABV

2.  It is independent of the path taken. It is measured in Joules per 
Coulomb referred as Volt.



 The potential at any point due to a point charge Q located at the origin is

The potential at any point is the potential difference between that 
point and a chosen point at which the potential is zero.

Assuming zero potential at infinity, the potential at a distance r from 
the point charge is the work done per unit charge by an external agent 
in transferring a test charge from infinity to that point.
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If the point charge Q is not at origin but at a point whose position 
vector is     , the potential             at      becomes'r 'r)( 'rV
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For n point charges Q1, Q2, Q3…..Qn located at points with position 

vectors                              the potential at      is

If there is continuous charge distribution instead of point charges then 

the potential at       becomes
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Relationship between E and V

The potential difference between points A and B is independent of the 
path taken 
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It means that the line integral of        along a closed path must be zero.E

(i)



Physically it means that no net work is done in moving a charge along 
a closed path in an electrostatic field.

0).(. =×∇= ∫∫ SdEldE

Equation (i) and (ii) are known as Maxwell’s equation for static 
electric fields. 

(ii)

Applying Stokes’s theorem to equation (i)

0=×∇ E

Equation (i) is in integral  form while equation (ii) is in differential 
form, both depicting conservative nature of an electrostatic field.



Also

It means Electric Field Intensity is the gradient of V.

VE −∇=

The negative sign shows that the direction of    is opposite to the 
direction in which V increases.

E



Consider an atom of the dielectric consisting of an electron cloud (-Q) 
and a positive nucleus (+Q).

Polarization in Dielectrics

When an electric field    is applied, the positive charge is displaced 

from its equilibrium position in the direction of     by               while 

the negative charge is displaced  by                 in the opposite 

direction.

E

E EQF =+

A  dipole results from the displacement of charges and the dielectric is 
polarized. In polarized the electron cloud is distorted by the applied 
electric field.

EQF =−



where      is the distance vector between  -Q to +Q.

dQp =
d

If there are N dipoles in a volume Δv of the dielectric, the total dipole 
moment due to the electric field

P

This distorted charge distribution is equivalent to the original 
distribution plus the dipole  whose  moment is

For the measurement of intensity of polarization, we define  
polarization      (coulomb per square meter) as dipole moment per unit 
volume



The major effect of the electric field on the dielectric is the creation of 
dipole moments that align themselves in the direction of electric field.

This type of dielectrics are  said to be non-polar. eg: H2, N2, O2

Other types of molecules that have in-built permanent dipole moments 
are called polar. eg: H2O, HCl

When electric field is applied to a polar material then its permanent 
dipole experiences a torque that tends to align its dipole moment in the 
direction of the electric field.



Consider a dielectric material consisting of dipoles with Dipole 
moment       per unit volume.

Field due to a Polarized Dielectric

'dvP
P

The potential dV at an external point O due to 

where R2 = (x-x’)2+(y-y’)2+(z-z’)2 and R is the 
distance between volume element dv’ and the 
point O.

But

Applying the vector identity

=               -

(i)



Put this in (i) and integrate over the entire volume v’ of  the dielectric

Applying Divergence Theorem to the first term

where an’ is the outward unit normal to the surface  dS’ of the dielectric

The two terms in (ii) denote the potential due to surface and volume 
charge distributions with densities

(ii)



where ρps and ρpv are the bound surface and volume charge densities.

Bound charges are those which are not free to move in the dielectric 
material.

The total positive bound charge on surface S bounding the dielectric is

Equation (ii) says that where polarization occurs, an equivalent 
volume charge density, ρpv is formed throughout the dielectric while 
an equivalent surface charge density, ρps is formed over the surface of 
dielectric. 

while the charge that remains inside S is



Total charge on dielectric remains zero.

Total charge  =

When dielectric contains free charge
If ρv is the free volume charge density then the total volume charge 
density ρt

Hence

Where 



The effect of the dielectric on the electric field      is to increase     

inside it by an amount     .P

DE

The polarization would vary directly as the  applied electric field.

Where       is known as the electric susceptibility of the  materialeχ
It is a measure of how susceptible a given dielectric is to electric fields.



We know that

Dielectric Constant and Strength

or

where є is the permittivity of the dielectric, єo is the permittivity of the 
free space and єr is the  dielectric constant or relative permittivity.

and

Thus

where
roεεε =

and



No dielectric is ideal. When the electric field in a dielectric is 
sufficiently high then it begins to pull electrons completely out of the 
molecules, and the dielectric becomes conducting. 

When a dielectric becomes conducting then it is called dielectric 
breakdown. It depends on the type of material, humidity, temperature 
and the amount of time for which the field is applied.

The minimum value of the electric field at which the dielectric 
breakdown occurs is called the dielectric strength of the dielectric 
material.

or

The dielectric strength is the maximum value of the electric field that a 
dielectric can tolerate or withstand without breakdown.



Continuity Equation and Relaxation Time

According to principle of charge conservation, the time rate of 
decrease of charge within a given volume must be equal to the net 
outward current flow through the closed surface of the volume.

The current Iout coming out of the closed surface

where Qin is the total charge enclosed by the closed surface.
Using divergence theorem

But

(i)



Equation (i) now becomes

This is called the continuity of current equation.

Effect of introducing charge at some interior point of a 
conductor/dielectric

or

According to Ohm’s law

According to Gauss’s law

(ii)



Equation (ii) now becomes

Integrating both sides

or

This is homogeneous liner ordinary differential equation. By separating 
variables we get



where

(iii)

Equation (iii) shows that as a result of introducing charge at some 
interior point of the material there is a decay of the volume charge 
density ρv.

The time constant Tr is known as the relaxation time or the relaxation 
time.

Relaxation time is the time in which a charge placed in the interior of a 
material to drop to e-1 = 36.8 % of its initial value.

For Copper Tr  = 1.53  x 10-19 sec (short for good conductors)
For fused Quartz Tr  = 51.2 days (large for good dielectrics)



Boundary Conditions

If the field exists in a region consisting of two different media, the 
conditions that the field must satisfy at the interface separating the 
media are called boundary conditions

These conditions are helpful in determining the field on one side of 
the boundary when the field on other side is known.

We will consider the boundary conditions at an interface separating

1. Dielectric (єr1) and Dielectric (єr2)
2. Conductor and Dielectric
3. Conductor and free space

For determining boundary conditions we will use Maxwell’s equations

and



Biot-Savart’s Law



Ampere’s circuit Law



Application of Ampere’s law : Infinite Sheet 
Current

Consider an infinite current sheet in z = 0 plane.

To solve integral we need to know how H is like

If the sheet has a uniform current density then
^

yy aKK =
Applying Ampere’s Law on closed 
rectangular path (Amperian path) we 
get

We assume the sheet comprising of filaments dH above and below the 
sheet due to pair of filamentary current.

(i)



The resultant dH has only an x-component.

where Ho is to be determined.

Also H on one side of sheet is the negative of the other.

Due to infinite extent of the sheet, it can be regarded as 
consisting of such filamentary  pairs so that the characteristic of 
H for a pair are the same for the infinite current sheets

(ii)



Comparing (i) and (iii), we get

Evaluating the line integral of H along the closed path

(iii)

Using (iv) in (ii), we get

(iv)



where an is a unit normal vector directed from the current sheet to the 
point of interest.

Generally, for an infinite sheet of current density K



Magnetic Flux Density

The magnetic flux density B is similar to the electric flux density D

where  µo is a constant and is known as the permeability of free space.

Therefore, the magnetic flux density B is related to the magnetic field 
intensity H

The magnetic flux through a surface S is given by

Its unit is Henry/meter (H/m) and has the value

where  the magnetic flux ψ is in webers (Wb) and the magnetic flux 
density is in weber/ square meter  or Teslas.



Magnetic flux lines due to a straight 
wire with current coming out of the 
page

Each magnetic flux line is closed 
with no beginning and no end and 
are also not crossing each other.

In an electrostatic field, the flux passing through a closed surface is 
the same as the charge enclosed.

Thus it is possible to have an isolated 
electric charge.
Also the electric flux lines are not 
necessarily closed.



Magnetic flux lines are always close 
upon themselves,.

So it is not possible to have an isolated 
magnetic pole (or magnetic charges)

An isolated magnetic charge does not exist.

Thus the total flux through a closed surface in a magnetic field must 
be zero.

This equation is known as the law of conservation of magnetic flux or 
Gauss’s Law for Magnetostatic fields.

Magnetostatic field is not conservative but magnetic flux is conserved.



This is Maxwell’s fourth equation.

Applying Divergence theorem, we get

or

This equation suggests that magnetostatic fields have no source or 
sinks.
Also magnetic flux lines are always continuous.



Faraday’s law

According to Faraday a time varying magnetic field produces an 
induced voltage (called electromotive force or emf) in a closed circuit, 
which causes a flow of current.

The induced emf (Vemf) in any closed circuit is equal to the time rate of 
change of the magnetic flux linkage by the circuit. This is Faraday’s 
Law and can be expressed as

where N is the number of turns in the circuit and ψ is the flux through 
each turn.

The negative sign shows that the induced voltage acts in such a way to 
oppose the flux producing in it. This is known as Lenz’s Law.



The direction of current flow in the circuit is such that the induced 
magnetic field produced by the induced current will oppose the 
original magnetic field.

Consider the electrical circuit 
where battery is a source of 
emf. The battery produces a 
field Ef.

The total electric field at any point is

Due to the charge 
accumulation at the battery 
terminals a electrostatic field, 
Ee                    also exists)( V−∇=

Ef  is zero outside the battery. Ef and Ee have opposite directions in 
the battery.  

Ee Ef



On integration over the closed circuit

It is the potential difference (VP - VN) between the battery’s open 
circuit terminal.

Through battery

where                               because Ee   is conservative.   

The emf of  the battery is the line integral of the emf produced field.

 Ef and Ee are equal but opposite within the battery.



Transformer and Motional EMF

For a circuit with a single turn (N = 1)

In terms of E and B this can be written as

where ψ has been replaced by                     and S is the surface area of 
the circuit bounded by a closed path L..

The equation says that in time-varying situation, both electric and 
magnetic fields are  present and are interrelated.

(i)



The variation of flux with time may be caused in three ways.

1. By having a stationary loop in a time-varying B field.
2. By having a time-varying loop area in a static B field.
3. By having a time-varying loop area in a time-varying B field.

Consider a stationary conducting 
loop in a time-varying magnetic B 
field. The equation (i) becomes

Stationary loop in a time-varying B field 
(Transformer emf)



This emf induced by the time-varying current in a stationary loop is 
often referred to as transformer emf in power analysis since it is due to 
the transformer action.

By applying Stokes’s theorem  to the middle term, we get

This is one of the Maxwell’s equations for time-varying fields.

Thus

It shows that the time-varying field is not conservative.



2. Moving loop in static B field (Motional emf)

The motional electric field Em is defined as

When a conducting loop is moving in a static B field, an emf is 
introduced in the loop.

The force on a charge moving with uniform velocity u in a magnetic 
field B is

Consider a conducting loop moving with uniform velocity u, the emf 
induced in the loop is

This kind of emf is called the motional emf or flux-cutting emf. 
Because it is due to the motional action. eg,. Motors, generators

(i)



Consider a rod moving 
between a pair of rails

By applying Stokes’s theorem  to equation (i), we get

The equation (i) becomes

Here B and u are 
perpendicular so the 
force can be given by

or



Consider a moving conducting loop in a time-varying magnetic field

also

3. Moving loop in time-varying field

 Then both transformer emf and motional emf are present.

 Thus the total emf will be the sum of transformer emf and motional 
emf



For static EM fields

Displacement Current

 But the divergence of the curl of a vector field is zero. So

 But the continuity of current requires

(ii)

(i)

(iii)

 Equation (ii) and (iii) are incompatible for time-varying conditions

 So we need to modify equation (i) to agree with (iii)

 Add a term to equation (i) so that it becomes

 where Jd is to defined and determined.

(iv)



Again the divergence of the curl of a vector field is zero. So

 In order  for equation (v) to agree with (iii)

(v)

 Putting (vi) in (iv), we get

 This is Maxwell’s equation (based on Ampere Circuital Law) for a 
time-varying field. The term                   is known as displacement 
current density and J is the conduction current density                 .

or (vi)



Maxwell’s  Equations in Final Form




