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Chapter 6: Analysis of Structures

Some of the most common structures we see around us are buildings & bridges. In addition to these,
one can also classify a lot of other objects as "structures."

For instance:
= The space station
= Chassis of your car

= Your chair, table, bookshelf etc. etc.

Almost everything has an internal structure and can be thought of as a "structure".

The objective of this chapter is to figure out the forces being carried by these structures so that as an
engineer, you can decide whether the structure can sustain these forces or not.

Recall:

= External forces: "Loads" acting on your structure.
Note: this includes "reaction" forces from the supports as well.

= Internal forces: Forces that develop within every structure that keep the different parts
of the structure together.
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In this chapter, we will find the internal forces in the following types of structures :

= Trusses
= Frames
= Machines
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6.2-6.3 Trusses

Trusses are used commonly in Steel buildings and bridges.

Definition: A truss is a structure that consists of
= All straight members
= connected together with pin joints
= connected only at the ends of the members
= and all external forces (loads & reactions) must be applied only at the joints.
Note:
= Every member of a truss is a 2 force member.
= Trusses are assumed to be of negligible weight (compared to the loads they carry)
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6.4 Analysis of Trusses: Method of Joints
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(i) Determining the EXTERNAL reactions.
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Similarly, solve joints C, F and B in that order and calculate the rest of the unknowns.
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6.5 Joints under special loading conditions: Zero force members

Many times, in trusses, there may be joints that connect
members that are "aligned" along the same line.
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Similarly, from joint E: DE=EF and AE=0

Exercise 6.32

Identify the zero-force members.
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6.6 Space Trusses

Generalizing the structure of planar trusses to 3D results in space trusses.

The most elementary 3D space truss structure is the tetrahedron. The
members are connected with ball-and-socket joints.

Simple space trusses can be obtained by adding 3 elements at a time to 3
existing joints and joining all the new members at a point.

Note: For a 3D determinate truss:

n: joints j —» Bm {%MLL}/_}’Y‘WM W‘W\A ZIF O>
\ /

m: members ®

r: reactions :l - 6’”/‘1'"() Mindro s / \

If the truss is "determinate" then this condition is satisfied.

However, even if this condition is satisfied, the truss may not be determinate.
Thus this is a Necessary condition (not sufficient) for solvability of a truss.

3n=m+r

Exercise 6.36 Z134 N
Determine the forces in each member.
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Similarly find the 3 unknowns Fgp, Fsc and By at joint B.
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6.7 Analysis of Trusses: Method of Sections

The method of joints is good if we have to find the internal forces in all the truss members.
In situations where we need to find the internal forces only in a few specific members of a truss, the method of sections
is more appropriate.

Method of sections:
= Imagine a cut through the members of interest
= Try to cut the least number of members (preferably 3).
= Draw FBD of the 2 different parts of the truss
= Enforce Equilibrium to find the forces in the 3 members that are cut. o kn 0

For example, find the force in member EF:
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Read Examples 6.2 and 6.3 from the book.

Exercise 6.63
Find forces in the members EH and GI.
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6.8 Compound Trusses; Determinate vs. Indeterminate Trusses.

Trusses made by joining two or more simple trusses rigidly are called Compound Trusses. (Z'v?\, :7;5,;0 2042 = 2’!7 +)
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Exercise 6.69 Classify the trusses as:
Externally: Completely / Partially /Improperly constrained

Internally: Determinate / Indeterminate. (if completely constrained)
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6.9 - 6.11 Frames

Frames are structures with at least one multi-force member,
i.e. atleast one member that has 3 or more forces acting on it at different points.

Frame analysis involves determining:

(i) External Reactions (ii) Internal forces at the joints

Note: 1 A y

= Follow Newton's 3rd Law

Frames that are not internally Rigid

When a frame is not internally rigid, it has to be provided with
additional external supports to make it rigid.

The support reactions for such frames cannot be simply
determined by external equilibrium.

One has to draw the FBD of all the component parts to find out
whether the frame is determinate or indeterminate.
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Example 6.4
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Read examples 6.5 and 6.6
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Exercise 6.120
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6.12 Machines

¢ Machines are structures designed to transmit and modify forces.
Their main purpose is to transform input forces into output forces.

e Machines are usually non-rigid internally. So we use the components
of the machine as a free-body.

¢ Given the magnitude of P, determine the magnitude of Q.

Exercise 6.143 6.143 The tongs shown are used to apply a total upward force of 45 kN
on a pipe cap. Determine the forces exerted at D and F on
22°° 225 tong ADF.
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Determinate vs. Indeterminate Structures

Structures such as Trusses and Frames can be broadly classified as:

= Determinate:
When all the unknowns (external reactions and internal forces) can be found
using "Statics" i.e. Drawing FBDs and writing equilibrium equations.

= Indeterminate:
When, not all the unknowns can be found using Statics.
Note: Some/most unknowns can still be found.

Structures can also be classified as:
= Completely restrained
= Partially restrained
= Improperly restrained

For trusses, we have been using "formulas" such as (2n = m+r) for planar trusses, and (3n = m+r) for space trusses
to judge the type of structure. For frames, this can be much more complicated. We need to write and solve the
equilibrium equations and only if a solution exists, we can conclude that the structure is determinate. Otherwise
the structure may be partially constrained or indeterminate or both.

IMPORTANT:
One of the best ways (and mathematically correct way) to conclude determinacy of any structure is by using
Eigen-values. Eigen-values tell us how many independent equations we have and whether can or can’t solve a

system of equations written in the form of Matrices. e’ -19
VA n/\-——)
[Alx=b by
. = | e
To do this, 124 x o
Draw the FBDs of all rigid components of the structure 3
Write out the all the possible equilibrium equations. 67 l°t-|

Case 1: Number of Equations (E) < Number of Unknowns (U) <=> INDETERMINATE

Case 2: Number of Equations (E) > Number of Unknowns (U) <=> PARTIALLY RESTRAINED

Case 3: Number of Equations (E) = Number of Unknowns (U)
Find the number of non-zero Eigen-values (V) of the square matrix [A].
Find the number of non-zero Eigen-values (V») of the rectangular matrix [A|b].

Case 3(a): Vi=E=U => Unique Solution
DETERMINATE
Case 3(b): Vi<E => Improperly constrained
Number of INDEPENDENT equations = V; < U Indeterminate & Partially constrained
HVi=V, <U => Infinitely many solutions possible
1) Vi<V, => No solution exists

Note: In this procedure, it is better not to reduce the number of unknowns or number of equations by using
properties of 2-force or 3-force members.
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