
Problem Solving Through Programming
Using C

Code-CS181106
Module 1

Lima Basumatary
Asst.Professor

EE Department
BBEC, Kokrajhar

Contents

• Components of computer system.

• System software

• Operating system

• Language Processor

• Device Drive

• Application software

• Utility software

2

Components of computer system

• Computer requires various units to perform
the prescribed tasks and to co-ordinate the
operations.

• Basically a computer has four units.

1. Input unit

2. Output unit

3. Central Processing Unit(CPU)

4. Memory

3

Components of computer system continued..

Control Unit

Output DeviceInput Device
Primary Memory

Secondary
Memory

Processor

Arithmetic
Logic Unit ALU

Memory

4
Figure 1

Components of computer system continued..

Input Unit

• It accepts the list of instructions and data from the
outside world.

• It converts these instructions and data in computer
acceptable format.

• It supplies the converted instructions and data to the
computer system for further processing.

5

Components of computer system continued..

Output Unit

• It accepts the results produced by the computer
which are in coded form and hence cannot be easily
understood by us.

• It converts these coded results to human acceptable
form.

• It supplies the converted result to the outside world.

6

Components of computer system continued..

CPU
The CPU consists of three main sub systems:

o Arithmetic Logic Unit (ALU).
o Control Unit (CU).
o Registers.

ALU
• Place where actual execution of the instruction takes place during

the processing operations.

• All calculations are performed and all comparisons are made in the
ALU.

• After the completion of processing, the final results which are
stored in the storage unit are released to an O/P device.

7

Components of computer system continued..

Control Unit (CU)

• It coordinates with the input and output device of the
computer.

• To maintain proper sequence of processing data, the control
unit uses clock impulse.

• The basic form of CU is to fetch the instruction stored in the
main memory, identify the operations and the devices
involved in it and accordingly generate control signals.

8

Components of computer system continued..

Registers

• Register is one of a small set of data holding places that are
part of a computer processors.

• Registers store data, instructions, address and intermediate
results of processing.

9

Software

Software

System Software
Ex. Windows

Application
Software

Ex. Ms- Word,
Adobe

Photoshop

Utility Software
Ex. Anti Virus

Operating
System

Language
Processor

Device
Driver

10

Figure: 2

11

Hardware

System Software

Application Software

Figure 3

Software Concept

• Hardware devices need user instructions to
function.

• A set of instructions that achieve a single
outcome are called program or procedure.

• Many programs functioning together to do a
task make a software.

Categories of software:
➢System software

➢Application software

➢Utility software

12

System Software

• Software required to run the hardware parts of the computer
and other application software.

• Acts as interface between hardware and user applications

• Interface is needed because hardware devices or machines
and humans speak in different languages.

• English is the pre-dominant language of interacting with
computers.

• System software converts all human instructions into machine
understandable instructions.

Types of system software:
➢ Operating system

➢ Language processor

➢ Device drives

13

Types of System Software continued…
Operating system

• Operating system is the lifeline of computer.

• OS is the first software that is loaded into the computer
memory.

• Computer does not start unless it has an operating system
installed in it because OS-

✓ Keeps all hardware parts in a state of readiness to follow user
instructions.

✓ Co-ordinate between different devices.

✓ It schedules multiple tasks as per priority.

✓ It allocates resources to each tasks.

✓ It enables the computer to access the network.

✓ Enables users to access and use application software.
14

Types of System Software continued…
Language processor

It converts all user instructions in machine
understandable language.

Three types of languages:

1. Machine level language: a string of 0’s and 1’s that
the machine can understand.

2. Assembly level language: defines mnemonics

3. High level language: uses English like statements
and is completely independent of machines.

15

Types of System Software continued…
Three types of language interpreters:

a. Assembler: Converts assembly level program into
machine level program

b. Interpreter: Converts high level program into
machine level program line by line.

c. Compiler: Converts high level programs into
machine level programs at one go rather than line
by line.

16

Types of System Software
Device driver

• System software that controls and monitors
functioning of a specific device on computer.

• Each device that needs to be attached externally to
the system has a specific driver associated with it.

• When you attach a new device, you need to install its
driver so that the OS knows how it needs to be
managed.

17

Application Software
A software that performs a single task.

Commonly used application software are:

➢Word processing

➢ Spread sheets

➢ Presentation

➢Database management

➢Multimedia tools.

18

Utility Software
• Application software that assists system software in doing

their work is called utility software.

Example

➢ Antivirus software

➢ Disk Management tools

➢ File Management tools

➢ Compression tools

➢ Backup tools

19

Assembler
• Assembler is a system software that converts assembly level

programs to machine level code.

• Advantages provided by assembly level programming:
– Increases the efficiency of the programmer

– Productivity increases

– Programmer has flexibility in writing programs customized to the
specific computer.

20

Assembler
Machine level program

(Object code)
Assembly level

program
(Source code)

Compiler and interpreters
• Compilers and interpreters are programs that help convert the

high level language (source code) into machine code to be
understood by the computers.

21

Interpreter Compiler

Translates just one statement of the
program at a time into machine code.

Scans the entire program and translates
the whole of it into machine code once.

Takes very less time to analyze the code Takes a lot of time to analyze the source
code.

Does not generate an intermediary
code. Hence, is highly efficient in terms
of memory

Always generates intermediary object
code. It needs further linking. Hence
more memory needed.

Keeps translating the program
continuously till the first error is
confronted.

Generates the error message only after
it scans the complete program.

Used by programming languages like
Ruby and Python for example.

Used by programming languages like C
and C++ for example.

Algorithms

Algorithm

22

Flow chart Pseudo code

Flowchart

A flowchart is a type of diagram
representing a process using different
symbols containing information about
steps or a sequence of events.

23

Flowchart symbols

24

Flow lines

Terminal

Input/output

Processing

Decision

Connector

Flowchart

Example:

25

Start

Input Name,
Hour, Rate

Calculate
Pay= Hour* Rate

Display
Name, Rate

End

Note: Name, hour and pay are variables in the program

Algorithm

• It is defined as a finite sequence of explicit
instructions that, when provide with a set of
input values, produces an output and
terminates.

• We can use English like phases to describe an
algorithm.

• In this case the description is called pseudo
code.

26

Algorithm Example

• Input the three values into the variables
Name, Hour, Rate.

• Calculate Pay=Hour*rate

• Display Name and Pay.

27

Example

Algorithm and flowchart for addition of two
numbers.

Algorithm

Step 1: Start

Step 2: Declare variables num1,num2 and sum.

Step 3: Read values for num1, num2.

Step 4: Add num1, num2and assign the result to a
variable sum

Step 5: Display sum

Step 6: Stop

28

Example

Flowchart

29

Start

Declare variables num1,num2
and sum

Read num1 and num2

Add num1 and num2 and assign
values to sum

Sum=num1+num2

Print sum

Stop

Source code

• C is a general purpose programming language

• By using the C programming language, we can
write the instruction of the computer
programs.

• Instructions written in any programming
language in human readable form is called as
source code.

30

Source file

• Source file is the file which contains the
source code written in C programming
language , then that file is also called as the C
source file.

• To write the code we can use any text editor
and save that as a computer file.

• While writing C programming language it
provides a lot of built in features to
implement common operations that we have
to use in the program.

31

Source file continued..

• For example: in programming someone has to
perform frequently the input operations. And
the programmer have to work on distinct
value, so for all this operations, the C
programming language provides the built in
features.

• This features are provided in the form of
standard library, which contains all the built in
features that will perform the common
operations.

32

Source file continued..

How can we differentiate a file which contains
a C programming language from any other
file?

For example: if we have a text file we will have a
.txt function, .mp3 for music file and .pdf,
similarly .C for C source file.

33

Compilation

• When a program is written using C language,
it cant be directly executed in the computer.
This is because the computer only
understands the code which is written in the
binary language.

• That is why the source code needs to be
converted to the machine code using
compilation process.

• Code generated by the compilation process is
called object code.

34

Compilation continued…

• The file containing the object code is called as
the object file.

Represented as:

.obj file extension(windows)

.o file extension (linux)

35

C Compilation process

36

Source
code(.c file)

Pre processor

Compiler

Assembly code

Assembler

Linker

Libraries

Object Code

Executable
file

Pre processor

37

/* this is demo*/
include<stdio.h>

Void main()
{

Print(“hello”);
}

Pre processor

Code of stdio.h file
Void main()

{
print (“hello”)

}

*Removes comments
from the code.
*include header file
code in the file itself.
*removes macro name
with the code.

Compiler

Compiler

bbbb

38

Compiler

Push ebp
Move ebp, esp

And esp-16
Sub esp,16

Mov eax, OFFSET
FLAT:LCO

Mov D WORD PTR
[esp], eax
Call printf

Leave
ret

Assembler

0010011010101110
0001010111101010
0000101110011001
1001100110010110
0101010101010101
1001111111000000
1010101010101010

*Compiler generates assembly code

Assembly converts assembly code
into object code

Pure binary code or
machine language

Linker

39

111010
100010
101101

000111
010000
100111

101001
110111
010001

Library

Linker

exe

Linker

• If you are working on a project in which there are
multiple modules, at that time we will have a
number of C files and when we compile them we will
get number of object files.

• We have to merge all the object file into a single one.

• Linker will club all the files, link with the library
function, pack everything in a single file and that file
is known as .exe file

40

3 types of Errors

1. Syntax error

2. Runtime error

3. Logical errors

Syntax errors: Errors in our code that the computer
cannot interpret. These errors are often

➢ Spelling errors

➢ Omission of important characters(such as missing
colon)

➢ Inconsistent use of wrong indentation.

41

3 types of Errors

Runtime errors: Errors that are not detected until
runtime. These are often caused by:

➢ It cant find some data because it does not exists.

➢ It cant perform an action on the data it has been
given because it is an invalid type of data

Ex: multiply Dog with 300.

42

3 types of Errors

Logical errors: errors in the code that do not throw an
error at all, but simply do not do what you intended
the code to do.

*These are the most difficult to spot because they
can only be found through full and extensive testing.

• Temp=int(input(“How warm is it today?”))

if temp<30

print (“it is hot”)

else

print(“it is cold”)

43

Variables

Definition: variables are simply names used to refer to
some location in memory-a location that holds a
value with which we are working.

• One whose value can be changed during the
execution of the program.

• Instead of entering data directly into a program, a
programmer can use variables to store the data in
memory.

• The memory location can be identified by the
variable name.

44

Variables continued…
• When the program is executed, the variables are

replaced with data.

• The variables must be declared before they can be
used in a program.

i. Declaring variables in C:

The syntax for declaring variables in C is:

To declare one variable:

data-type variable;

Example: int a;

float rate;

char ch;

45

Variables continued…
Declaring of constants: A constant can be declared like

a normal variable, but preceded with “const”
keyword and a value should be assigned.

for example:const int rate=10, const floatpi=3.14;
const ch=‘a’

46

Variables continued…
To declare more than one variable:

data-type variable1,variable2,…….variablen;

Example: int a, age, sum;

float salary, average;

While declaring a variable, it can be initialized with a value.

For example, int age=18; float rate=10.5; char ch= ‘a’;

When a variable is declared, a memory location gets allocated for the
variable and the location holds the value of that variable.

For example: int age=18;

For the variable “age”, two bytes of memory will be alocated and the
location holds the value 18

age- name of the variable

18- Value of the variable

47

Data types
Definition: Data types are declarations for memory

locations or variables that determine the
characteristics of the data that may be stored and
the method of processing that are permitted
involving them.

• A data type is to identify various types of data, such
as real, integer or character that determines the
possible values for that type.

• The data type supported by C are tabulated in
table.1

48

Data types continued…

49

Table 1

Structure of C program

50

The structure consists of the following parts:

➢Preprocessor directives

➢Variable and function declarations

➢Main function

➢Other functions.

Preprocessor directives

Structure of C program continued….

51

Preprocessor directives

• At the time of compilation itself some processes
can be done in C.

• The commands which invokes such processes are
called preprocessor directives.

• These can optionally be present in the program.

• There are three types of preprocessor directives
available with C.

• They are inclusion (#include), macro substitute
(#define) and conditional (#if) directives.

Structure of C program continued….

52

Variables and function declarations

• Outside the main function, variables and
functions can optionally be declared.

• Such variables and functions declared before
the function main() are global and hence are
available to all functions.

Structure of C program continued….

53

Main function (main())

• This is the main function of any C program.

• C compilers starts execution from this main ().

Structure of C program continued….

54

Other functions

• All other functions called from main() or any
other functions can be present after the
statements of main().

• Though this sequence is followed always, C
compilers allows to have other function
statements to appear before the main
program. But still the C compiler starts
compiling from main()

Structure of C program continued….

55

Structure of C program continued….

56

