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The z-transform of a sequencé) is —_ _
X(z) = Z zn|z"".

The z-transform can also be thought of as an opel&{e} that transforms a
sequence to a function:

[e.@)

Z{z[n]y = ) znlz " = X(2).

n=—oo
In both cases is a continuous complex variable.

We may obtain the Fourier transform from the z-transform akimg the
substitutionz = e/“. This corresponds to restricting| = 1. Also, with
2z = relv,

[e.@) oo

X(rel¥) = Z z[n](re?*)™" = Z (z[n]r—™) e7 7™,

n=—oo n=—oo

That is, the z-transform is the Fourier transform of the segex|n|r~". For
r = 1 this becomes the Fourier transformagf.]. The Fourier transform
therefore corresponds to the z-transform evaluated onriitieircle:




Unit circle

The inherent periodicity in frequency of the Fourier tramsf is captured
naturally under this interpretation.

The Fourier transform does not converge for all sequencese-nfinite sum
may not always be finite. Similarly, the z-transform doesawtverge for all
sequences or for all values of The set of values of for which the
z-transform converges is called tregion of convergence (ROC)

oo

The Fourier transform of[n] exists if the sund_ "~ __|z[n]| converges.
However, the z-transform af[n] is just the Fourier transform of the sequence
x[n|r~". The z-transform therefore exists (or converges) if

[e.@)

X(z) = Z |z[n]r™"| < oo,

This leads to the condition
> zn]llz] " < oo

for the existence of the z-transform. The ROC thereforeistaef a ring in
the z-plane:
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In specific cases the inner radius of this ring may includeotigin, and the
outer radius may extend to infinity. If the ROC includes thé aincle |z| = 1,
then the Fourier transform will converge.

Most useful z-transforms can be expressed in the form

P(z)

Q(z)’

whereP(z) andQ(z) are polynomials irz. The values ot for which
P(z) = 0 are called theerosof X (z), and the values witl))(z) = 0 are

called thepoles The zeros and poles completely speckfyz) to within a
ltiplicative constant. a N\

X(z) =

Example: right-sided exponential sequence
Consider the signat[n| = a"u[n]. This has the z-transform
——

(0. @] oo

X(z) = Z a"u[n|z"" = Z(az_l)".

n=—oo =

Convergence requires that \f\ \ﬂ L \
Z laz 1/|”<9oo \

= —
which is only the case ifuz~!| < 1, or equivalently{z| > |a|. In the ROC, the
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series converges to /7

00 i 1 .
X =Y = = S >l
n=0

since it is just a geometric series. The z-transform hastageg convergence
for any finite value of..

z-plane Im

unit circle ? 0 k ¢

The Fourier transform of[n] only exists if the ROC includes the unit circle,
which requires thafiu| < 1. On the other hand, it:| > 1 then the ROC does
not include the unit circle, and the Fourier transform daatsexist. This is
consistent with the fact that for these values diie sequence”u[n] is
exponentially growing, and the sum therefore does not ageve

/Ex/ample: left-sided exponential sequence

Now consider the sequeneén] = —a"u[—n — 1]. This sequence is left-sided
because it is nonzero only far< —1. The z-transform is

X(z) = Z —a"ul-n—1]z7" = — _Z a"z™"
= — Z a "zt =1— Z(a_lz)”.
—uwd
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For|a—'z| < 1, or|z| < |al, the series converges to

1 1 z
X pr— 1 — — — 3 < .
(2) l—a1lz 1—-az7! 2z-a 2l < al
z—-plane Im
unit circle
Re

Note that the expression for the z-transform (and the paile et) is exactly
the same as for the right-handed exponential sequenogly-the region of
convergence is different. Specifying the ROC is therefore critical when dealing
with the z-transform.

Example: sum of two exponentials
The signate[n] = ()" u[n] + (—%)" u[n] is the sum of two real

exponentials. The Z-trarsformis

XE@= 3 {(%)nu[n]+<—%>nu[n]}z—"

n=—oo

_ i <%>nu[n]z_"+ i (—%)nu[n]z_”

n=—oo

£

n=0

From the example for the right-handed exponential sequéinedirst term in
this sum converges fge| > 1/2, and the second fge| > 1/3. The combined
transformX (z) therefore converges in the intersection of these regions,




namely wherjz| > 1/2. In this case
1 4 1 22(z — &)
1—2z71 14227t (z-3)(z+3)

The pole-zero plot and region of convergence of the signal is

z-plane Im

unit circle

Example: finite length sequence

The signal
b//// a" 0<n<N-1
z[n] = .
0 otherwise

has z-transform

N—-1 N-—-1

=Y

n=0 n:O

_1- (az=H)N 1 2N —adV

1—az-1 N1 5 _4 °

Since there are only a finite number of nonzero terms the swayal
converges whenz ! is finite. There are no restrictions arn(|a| < oc), and

the ROC is the entire z-plane with the exception of the ortgia 0 (where the
terms in the sum are infinite). Th€ roots of the numerator polynomial are at

2p = ae? TR/N), k=0,1,...,N — 1,



since these values satisfy the equatidh= «. The zero at = 0 cancels the
pole atz = a, So there are no poles except at the origin, and the zeros$ are a

2 = ae? CTR/IN) k=1,...,N —1.

Properties of the region of convergence

The properties of the ROC depend on the nature of the sigrsauing that
the signal has a finite amplitude and that the z-transformragianal function:

¢/The ROC is aring or disk in the z-plane, 'c:_eintered on the origin
(0<rgp<lz| <rp < x).

‘/’ﬁe Fourier transform of[n] converges absolutely if and only if the ROC
of the z-transform includes the unit circle. ]

/The ROC cannot contain any poles.

o If x[n] is finite duration (ie. zero except on finite interval
—o0 < N1 <n < Ny < 00), then the ROC is the entire z-plane except
perhaps at = 0 or z = . -

If z[n] is a right-sided sequence then the ROC extends outward frem t
outermost finite pole to infinity.

/olf x[n] is left-sided then the ROC extends inward from the innermost
_—_’
nonzero pole ta = 0.

two-sided sequence (neither left nor right-sided) has £R0nsisting
of aring in the z-plane, bounded on the interior and extdrjoa pole (and
not containing any poles).

/o/The ROC is a connected region.



3 The inverse z-transform

Formally, the inverse z-transform can be performed by etalg a Cauchy
integral. However, for discrete LTI systems simpler methark often
sufficient.

h}.//lnspection method

If one is familiar with (or has a table of) common z-transfgrairs, the inverse
can be found by inspection. For example, one can invert tin@rsform

1 1
X6 = (=) K>3

2
using the z-transform pair

z 1
a™ul[n)« P for |z| > |al.

By inspection we recognise that

2[n] = (%)nu[n].

Also, if X (z) is a sum of terms then one may be able to do a term-by-term
inversion by inspection, yielding[n| as a sum of terms.

2 Partial fraction expansion

For any rational function we can obtain a partial fractiopaxsion, and
identify the z-transform of each term. Assume th@dt:) is expressed as a ratio
of polynomials inz—1!:

M —k
b
X(Z) _ Zk:o k<

__EiﬁloakZ‘k.




s always possible to factoX (z) as

(o) = o iy (0 e
_ o Ll —
@0 [Jj—y (1 — di2

wherethe;’'s anddy’s are the nonzero zeros and polesfz).
/ M < N and the poles are all first order, th&i(z) can be expressed as

A
X@=> g

k=1

In this case the coefficient$; are given by

A = (1 — dkz_l)X(z)‘

e If M > N and the poles are all first order, then an expansion of the form

M—N N A
—r k
r=0 k=1

can be used, and the,’s be obtained by long division of the numerator
by the denominator. Thd,’'s can be obtained using the same equation as
for M < N.

e The most general form for the partial fraction expansionicvitan also
deal with multiple-order poles, is

X=X B Y ey
o r _ -1 —d.—1\ym"’
r=0 hi T W2 ooy (L= diz™)

Ways of finding the”',,,’s can be found in most standard DSP texts.

The termsB,.z~" correspond to shifted and scaled impulse sequences, and
invert to terms of the fornB,.5[n — r|. The fractional terms

Ay
1-— dkz_l



correspond to exponential sequences. For these terms tGgRiPerties must
be used to decide whether the sequences are left-sidechbisraged.

Example: inverse by partial fractions
Consider the sequenagn] with z-transform _—

1 2 -1 -2 1 —1)2
PO P L U o N P IS
l—352z7t+35272 (1—-352z7 )1 —-271)

SinceM = N = 2 this can be expressed&N__

Ay Ay
1. — + -1
1—§Z 1 1—2

X(Z) ZBo+

The valueB, can be found by long division:

2
%2_2 — %z_l + 1) 2724227141
272327142
5271-1
SO
X(z) =2+ —1+527

(1—5z7H(1-271)

The coefficients4; and A, can be found using

A, = (1 — dkz_l)X(z)‘

Z:dk7
SO , ,
1+ 2z~ - 1+4+4
A= P22 FE _lratd
1 -2 19 1-2
and , ,
1+ 2z~ - 1+2+1
Ay = + 2z 1 —l—lz _ + 2+ _3
1— §Z_ L—1—1 ]_/2
Therefore 0 q
X(z)=2-— +

10



Using the fact that the ROC js| > 1, the terms can be inverted one at a time
by inspection to give

x[n] = 28[n] — 9(1/2)"u[n] + Sun].

3.3 Power series expansion

If the z-transform is given as a power series in the form

X(z) = Z x[n|z™"

= .. 4 x[-2]2% +2[-1)2t +2[0) +2[1)z7 F 2227+,
then any value in the sequence can be found by identifyingdk#icient of
the appropriate power af !.

Example: finite-length sequence
The z-transform

X(2) =220 - 3z (1427 - 27

can be multiplied out to give

1 1
X(2) =2%— §z—1—|—§z_1.

By inspection, the corresponding sequence is therefore

1 n=—2
n=-—1
zn] = ¢ -1 n=0

n=1

1
2
0 otherwise

11



or equivalently
2[n] = 16[n + 2] — %5[7@ +1] = 16[n] + %5[7@ _q).
Example: power series expansion
Consider the z-transform
X(2) =log(1+az™1), 12| > |al.

Using the power series expansion fog(1 + x), with |z| < 1, gives

n+l n.—n

X(Z):Z(—l) a™z

n=1

The corresponding sequence is therefore

(—1)nttas n>1

n

0 n <0.

x[n] =

Example: power series expansion by long division
Consider the transform
1
Since the ROC is the exterior of a circle, the sequence is-ggled. We
therefore divide to get a power series in powers of:

1+az ' +a?2724 -

1-— az_l) 1
l—az !
az~1
az 1—a?z72
a?z72 4.
or
1

T 1 =14az ' 4a*z %+,

12



Thereforex[n] = a™u[n].

Example: power series expansion for left-sided sequence
Consider instead the z-transform
1
X(Z>:1——az—1’ 2] < al.
Because of the ROC, the sequence is now a left-sided one.Wédgide to
obtain a series in powers of

Thusz[n] = —a"u[—n — 1].

4 Properties of the z-transform
In this section, ifX (z) denotes the z-transform of a sequenrfel and the
ROC of X (z) is indicated byR,,, then this relationship is indicated as
z[n]+Z5X(z), ROC=R,.
Furthermore, with regard to nomenclature, we have two semgsesuch that
21[n]<Z5X1(z), ROC= R,

2o[n]¢2+X5(z),  ROC= R,,.

4.1 Linearity

The linearity property is as follows:

axi[n] + bxs [n]<i>aX1(z) + b X5 (2), ROC contain®,, N R,,.

— ——

13



4.2 Time shifting

The time-shifting property is as follows:
x[n — no]éz_”oX(z), ROC= R,.

(The ROC may change by the possible addition or deletion-ef0 or
z = 00.) This is easily shown:

(0. @] oo

Y(Z>: Z :L“[n—no]z_”: Z gj[m]z_(m+no)

n=——oo m=—oQ

o0

=z " Z x[m]z7™ = 27" X (2).

)
‘/tx4nple: shifted exponential sequence U\( A4 ‘

Consider the z-transform
1 1

(-
: \z\>1 ; 4

From the ROC, this is a right-sided sequence. Rewriting,

X(Z):;:Z_l R \z\>1
1—21z71 1—1z71)7 4

The term in brackets corresponds to an exponential seq&ptE u[n]. The
factorz—1! shifts this sequence one sample to the right. The inversansform
is therefore

z[n] = (1/4)" tufn — 1].

Note that this result could also have been easily obtainedaspartial
fraction expansion.

14



4.3 Multiplication by an exponential sequence

The exponential multiplication property is
2z[n)<2sX(2/2),  ROC= |z|Rs,

where the notatioffzy| R, indicates that the ROC is scaled hy| (that is,
inner and outer radii of the ROC scale Jay|). All pole-zero locations are
similarly scaled by a factot,: if X(z) had a pole at = z;, thenX (z/z)
will have a pole at = zy2;.

e If 2 Is positive and real, this operation can be interpreted &siaking or

expanding of the z-plane — poles and zeros change alond liaeisin
the z-plane.

o If zo is complex with unit magnitude:f = ¢’“°) then the scaling

operation corresponds to a rotation in the z-plane by antkang That is,
the poles and zeros rotate along circles centered on thie ofilgis can be

interpreted as a shift in the frequency domain, associatédnaodulation

in the time domain by’/«°”, If the Fourier transform exists, this becomes

ejwonx[n]LX(ej(w_w(’)).

ample: exponential multiplication
The z-transform pair

uln]< S |z| > 1

can be used to determine the z-transformjof] = r" cos(won)u[n|. Since
cos(won) = 1/2e7wo™ 4 1/2e~7wom the signal can be rewritten as

x[n] = %(rej“’o)”u[n] + %(re‘j‘”o)"u[n].

15



From the exponential multiplication property,

1, wsn z 1/2
§(T6j 0)qu[n]< >1 e — |z| > r
1 —Jjwo\n Z 1/2
5(7“6 TNy n]< SPp— |z| >,
SO
1/2 1/2
X(2) = 1 — rejwoz—1 + 1 —reJwogy—1’ 2l >
1 —rcoswyz™! 2] >
= z| >
1 —2rcoswgz—t +r2z=2’
4.4 Differentiation
The differentiation property states that
dX
nx[n]<z> — 2z ) ROC= R,.

dz
This can be seen as follows: since

we have
dX(z)

oo oo

—Z

n=—oo n=—oo

Example: second order pole
The z-transform of the sequence

z[n| = na"u[n|

can be found using

a™u[n|« T 1z| > a,

16

= % Z (—n)z[n]z "t = Z nx[nlz™" = Z{nz[nl}.



to be

d 1 az~!
X(2) = -2 (— ) = |
(=) “dz (1 — az_1> (1—az"1)2’ 2l > a

4.5 Conjugation

This property is
2*[n)]<Z5X*(2*),  ROC= R,.

4.6 Time reversal

Here
1

o*[-n]<ZX*(1/2*),  ROC= =
The notationl / R, means that the ROC is inverted, sdif is the set of values
such that'p < |z| < rr, then the ROC is the set of valueszo$uch that

/< |2| < 1/7R.

Example: time-reversed exponential sequence
The signake[n] = a~"u[—n] is a time-reversed version af u[n]. The
z-transform is therefore

1 —a1z71
X(z) = = <la7Y.
/Z> l—az 1—a1lz71’ 2l <o

—_
———

—
—_—

4.7 Convolution

This property states that

x1[n] * xo [n]@Xl(z)Xg(z), ROC contain®&,, N R, .

17



Example: evaluating a convolution using the z-transform
The z-transforms of the signals [n] = a"u[n] andxs[n] = u[n| are

OO n. —n 1
XI(Z)ZZOCL R e 2| > |a
and
oo . 1
Xz(z):nz:%z =— l>1
For |a| < 1, the z-transform of the convolutiafin] = z1[n] * x3[n] is
— — .
e 1 = > 1
= = y4 .
VT 012 G-—a-1)
LKing a partial fraction expansion,
1 1 a
Y(z) = — > 1
(2) 1—a<1—z_1 1—az_1>’ 12 ’
SO
1
yln] = —— (uln] — "+ uln))

4.8 Initial value theorem
If z[n] is zero forn < 0, then

z[0] = lim X (z2).

Z—> 00

18



Some coyxm z-transform pairs are:

/ Sequence Transform ROC
/ /5[n] 1 Al 2
Un] — 2] > 1
/—u[—n — 1] — 12| < 1

ﬂ — m) z=™ All z except0 or co
ﬁ”u[n] L 2] > |a

1

-1
na™u[n] a2 2| > |a
—1
—na"u[—n — 1] Tty 12| < a|
a” 0<n<N-1 _
o ’ —1If§;—1N 1z| >0
0 otherwise
1—cos(wp)z "t
cos(won)uln] TS cos(wg) o177 2| > 1
oy — 1—7"(:050(&)0)271
r™ cos(won)u[n] T3 cos(wn) s T 17272 2| > r

4.9 Relationship with the Laplace transform

Continuous-time systems and signals are usually desciypéae Laplace
transform. Lettingz = e*7, wheres is the complex Laplace variable

s=d+ jw,

we have
5 — eld+jw)T _ dT ,jwT
Therefore

Izl = el and <z =wT =2nf/f, = 21w/ws,

19



wherew; is the sampling frequency. Asvaries fromoo to oo, the s-plane is
mapped to the z-plane:

e Thejw axis in the s-plane is mapped to the unit circle in the z-plane
e The left-hand s-plane is mapped to the inside of the unitecirc

e The right-hand s-plane maps to the outside of the unit circle
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