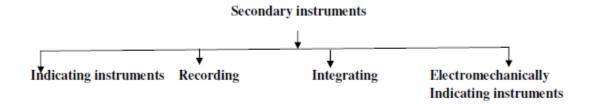

MEASURING INSTRUMENTS

1.1 Definition of instruments

An instrument is a device in which we can determine the magnitude or value of the quantity to be measured. The measuring quantity can be voltage, current, power and energy etc. Generally instruments are classified in to two categories.



1.2 Absolute instrument

An absolute instrument determines the magnitude of the quantity to be measured in terms of the instrument parameter. This instrument is really used, because each time the value of the measuring quantities varies. So we have to calculate the magnitude of the measuring quantity, analytically which is time consuming. These types of instruments are suitable for laboratory use. Example: Tangent galvanometer.

1.3 Secondary instrument

This instrument determines the value of the quantity to be measured directly. Generally these instruments are calibrated by comparing with another standard secondary instrument. Examples of such instruments are voltmeter, ammeter and wattmeter etc. Practically secondary instruments are suitable for measurement.

1.3.1 Indicating instrument

This instrument uses a dial and pointer to determine the value of measuring quantity. The pointer indication gives the magnitude of measuring quantity.

1.3.2 Recording instrument

This type of instruments records the magnitude of the quantity to be measured continuously over a specified period of time.

1.3.3 Integrating instrument

This type of instrument gives the total amount of the quantity to be measured over a specified period of time.

1.3.4 Electromechanical indicating instrument

For satisfactory operation electromechanical indicating instrument, three forces are necessary. They are

- (a) Deflecting force
- (b) Controlling force
- (c)Damping force

1.4 Deflecting force

When there is no input signal to the instrument, the pointer will be at its zero position. To deflect the pointer from its zero position, a force is necessary which is known as deflecting force. A system which produces the deflecting force is known as a deflecting system. Generally a deflecting system converts an electrical signal to a mechanical force.

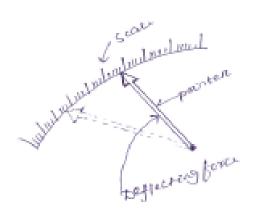


Fig. 1.1 Pointer scale

1.4.1 Magnitude effect

When a current passes through the coil (Fig.1.2), it produces a imaginary bar magnet. When a soft-iron piece is brought near this coil it is magnetized. Depending upon the current direction the poles are produced in such a way that there will be a force of attraction between the coil and the soft iron piece. This principle is used in moving iron attraction type instrument.

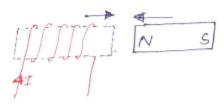


Fig. 1.2

If two soft iron pieces are place near a current carrying coil there will be a force of repulsion between the two soft iron pieces. This principle is utilized in the moving iron repulsion type instrument.

1.4.2 Force between a permanent magnet and a current carrying coil

When a current carrying coil is placed under the influence of magnetic field produced by a permanent magnet and a force is produced between them. This principle is utilized in the moving coil type instrument.

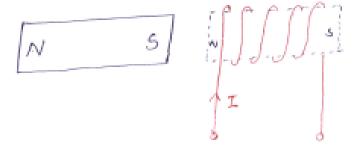


Fig. 1.3

1.4.3 Force between two current carrying coil

When two current carrying coils are placed closer to each other there will be a force of repulsion between them. If one coil is movable and other is fixed, the movable coil will move away from the fixed one. This principle is utilized in electrodynamometer type instrument.

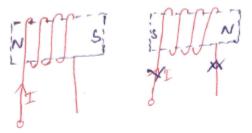


Fig. 1.4

1.5 Controlling force

To make the measurement indicated by the pointer definite (constant) a force is necessary which will be acting in the opposite direction to the deflecting force. This force is known as controlling force. A system which produces this force is known as a controlled system. When the external signal to be measured by the instrument is removed, the pointer should return back to the zero position. This is possibly due to the controlling force and the pointer will be indicating a steady value when the deflecting torque is equal to controlling torque.

$$T_d = T_c \tag{1.1}$$

1.5.1 Spring control

Two springs are attached on either end of spindle (Fig. 1.5). The spindle is placed in jewelled bearing, so that the frictional force between the pivot and spindle will be minimum. Two springs are provided in opposite direction to compensate the temperature error. The spring is made of phosphorous bronze. When a current is supply, the pointer deflects due to rotation of the spindle. While spindle is rotate, the spring attached with the spindle will oppose the movements of the pointer. The torqueproduced by the spring is directly proportional to the pointer deflection.

$$T_C \propto \theta$$
 (1.2)

The deflecting torque produced T_d proportional to ' Γ '. When $T_C = T_d$, the pointer will come to a steady position. Therefore

$$\theta \propto I$$
 (1.3)

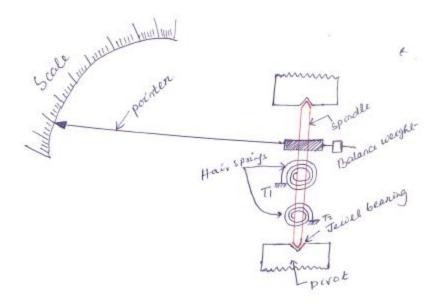


Fig. 1.5

Since, Θ and I are directly proportional to the scale of such instrument which uses spring controlled is uniform.