L T P (3-1-3)Theory Marks = 100 Sessional Marks = 50 Laboratory Marks = 50

1. The P-N junction Diode:

Shockley's equation and volt-amp characteristics of P-N junction. Static and Dynamic resistance of diode. Transition Capacitance and Diffusion Capacitance. Effect of temperature.

Various practical applications of diodes. Design of Rectifier and Filter Circuits. Special purpose diodes.

2. The Bipolar junction Transistor:

Transistor Action. Transistor Current equations; α and β of a transistor. Transistor Configurations and Transistor Characteristic curves. Base width modulation and early voltage. Ebers-Moll equations and Ebers-Moll model. Concept of amplification. Transistor biasing circuits, Bias stability and Stability factor. Thermal Run-Away. BJT as a switch.

Incremental small signal models of BJT; h-parameter model, Determination of h-parameters and Conversion Formulae of h-parameters; π-model and r-parameter model. Analysis of amplifiers with the help of incremental models. Comparison of performance of CE, CB & CC configurations. Designing of a single stage BJT amplifier. Darlington amplifier, Cascode amplifier and Difference amplifier. Some ideas about high speed analysis such as Miller effect and dominant pole approximation.

Multi-Stage Amplifiers; PNP and NPN combinations. Gain calculation in dB. Methods of coupling between stages. Frequency response of amplifiers and Band-Width.

3. Field Effect Transistors:

Principle and construction of JFET. Characteristic curves of JFET. JFET Biasing circuits. Small signal model of JFET. Analysis of JFET amplifiers. Designing of JFET amplifier.

MOS-FET. E-MOSFET and D-MOSFET. MOSFET amplifiers. MOSFET switch.

4. Feedback in amplifiers and Oscillators:

Negative and Positive feedback. Different feedback configurations. Advantages of negative feedback. Applications of positive feedback and Barkhausen Criteria for oscillations. RC oscillators LC oscillators and Crystal oscillators; their conditions of oscillation and frequency of oscillation. Designing of oscillators.

5. Power amplifiers:

Classification of power amplifiers as Class-A, Class-B, Class-C and Class-AB. R-C coupled and transformer coupled class-A power amplifier. Efficiency of Class-A power

amplifier. Non-linear distortion and second harmonic distortion. Class-B Push-pull power amplifier. Class-AB amplifier. Class-C amplifier. Designing of Power Amplifier.

6. Fabrication techniques of IC:

Introduction to device fabrication methods and fabrication of I.C.s. Simple descriptions of processes such as ion diffusion, photolithography, ion implantation, metallization and crystal growing techniques.

Reference Books:

- 1. Integrated Electronics:: Millman-Halkias (PHI)
- 2. Electronic Devices and Circuits :: David A Bell (Oxford)
- 3. Electronic Devices and Circuits :: Boylestead & Nashelsky (PHI)
- 4. Electronic Principles Physics, Models and Circuits :: Paul E. Gray and Campbell L Searle
- 5. Electronics Principles :: Malvino (TMH)